Skip to main content

A Novel Ultra Low Power Current Comparator

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 721))

Included in the following conference series:

  • 1712 Accesses

Abstract

A novel ultra low power current comparator has been proposed in this paper. The current comparator utilizes Dynamic Threshold Metal Oxide Semiconductor (DTMOS) technique to reduce the power dissipation, by reducing the supply voltage. The circuit is capable of working at a supply voltage as low as ±0.2 V. The circuit has been implemented in 0.18 µm (Taiwan Semiconductos Manufacturing Company) TSMC technology parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khateb, F., Dabbous, S.B.A., Vlassis, S.: A survey of non-conventional techniques or low-voltage low-power analog circuit design. Radioengineering 22, 415–427 (2013)

    Google Scholar 

  2. Yan, S., Sanchez-Sinencio, E.: Low voltage analog circuit design techniques: a tutorial. IEICE Trans. Analog Integr. Circ. Syst. E00-A(2) (2000)

    Google Scholar 

  3. Khateb, F., Khatib, N., Koton, J.: Novel low-voltage ultra-low power DVCC based on floating-gate folded cascade OTA. Microelectron. J. 42, 1010–1017 (2011)

    Article  Google Scholar 

  4. Farshidi, E., Keramatzadeh, A.: A new approach for low voltage CMOS based on current-controlled conveyors. IJE Trans. B: Appl. 27, 723–730 (2014)

    Google Scholar 

  5. Ramirez-Angulo, J., Lopez-Martin, A.J., Carvajal, R.G., Chavero, F.M.: Very low-volatge analog signal processing based on quasi-floating gate transistors. IEEE J. Solid-State Circ. 39, 434–442 (2003)

    Article  Google Scholar 

  6. Fallah, M., MiarNaimi, H.: A novel low voltage, low power and high gain operational amplifier using negative resistance and self cascode transistors. IJE Trans. C: Aspects 26, 303–308 (2013)

    Google Scholar 

  7. Assaderaghi, F., Sinitsky, D., Parke, S.A., et al.: Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low-voltage VLSI. IEEE Trans. Electron Devices 44, 414–422 (1997)

    Article  Google Scholar 

  8. Assaderaghi, F., Parke, S.A., Sinitskyd, D., Bokor, J., Ko, P.K., Hu, C.: Dynamic threshold-voltage MOSFET (DTMOS) for very low-voltage operation. IEEE Device Lett. 15, 510–512 (1994)

    Article  Google Scholar 

  9. Maymandi-Nejad, M., Sachdev, M.: DTMOS Technique for low-voltage analog circuits. IEEE Trans. Very Large Scale Integr. VLSI Syst. 14, 1151–1156 (2006)

    Article  Google Scholar 

  10. Li, Z., Yu, M., Ma, J.: A novel input stage based on DTMOS for low-voltage low-noise operational amplifier. In: IEEE Asia Pacific Conference on Circuits and Systems, pp. 1591–1594 (2006)

    Google Scholar 

  11. Achigui, H.F., Fayomi, C.J.B., Sawan, M.A.: 1-V low-power low-noise DTMOS based class AB opamp, In: The 3rd International IEEE-NEWCAS Conference, pp. 307–310 (2005)

    Google Scholar 

  12. Shen, E., Kuo, J.B.: A novel 0.8 V BP-DTMOS content addressable memory cell circuit derived from SOI-DTMOS techniques. In: Proceedings of IEEE Conference on Electron Devices and Solid-State Circuits, pp. 243–245 (2003)

    Google Scholar 

  13. Liu, J., Han, Y., Xie, L., Wang, Y., Wen, G.: A 1-V DTMOS-based fully differential telescopic OTA. In: Proceedings of IEEE Asia Pacific Conference on Circuits and Systems, pp. 49–52 (2014)

    Google Scholar 

  14. Chouhan, S.S., Halonen, K.: The DTMOS based UHF RF to DC conversion. In: IEEE 20th International Conference on Electronics, Circuits, and Systems, pp. 629–632 (2013)

    Google Scholar 

  15. Chouhan, S.S., Halonen, K.: The design and implementation of DTMOS biased all PMOS rectifier for RF energy harvesting. In: IEEE 12th International Conference on New Circuits and Systems, pp. 444–447 (2014)

    Google Scholar 

  16. Freitas, O.A., Current, K.W.: CMOS current comparator circuit. Electron. Lett. 19, 695–697 (1993)

    Article  Google Scholar 

  17. Traff, H.: Novel approach to high speed CMOS current comparators. Electron. Lett. 28, 310–312 (1992)

    Article  Google Scholar 

  18. Tang, A.T.K., Toumazou, C.: High performance CMOS current comparator. Electron. Lett. 30, 5–6 (1994)

    Article  Google Scholar 

  19. Min, B.M., Kim, S.W.: High performance CMOS current comparator using resistive feedback network. Electron. Lett. 34, 2074–2076 (1998)

    Article  Google Scholar 

  20. Chen, L., Shi, B., Lu, C.: Circuit design of a high speed and low power CMOS continuous-time current comparator. Analog Integr. Circ. Sig. Process 28, 293–297 (2001)

    Article  Google Scholar 

  21. Kasemsuwan, V., Khucharoensin, S.: High speed low input impedance CMOS current comparator. IEEE Trans. Fundam. E88-A(6), 1549–1553 (2005)

    Article  Google Scholar 

  22. Chavoshiani, R., Hashempour, O.: Differential current conveyor based current comparator. Int. J. Electron. Commun. (AEÜ) 65, 949–953 (2011)

    Article  Google Scholar 

  23. Chavoshiani, R., Hashempour, O.: A high-speed current conveyor based current comparator. Microelectron. J. 42, 28–32 (2011)

    Article  Google Scholar 

  24. Tang, X., Pun, K.P.: High performance CMOS current comparator. Electron. Lett. 45(20), 1007–1009 (2009)

    Article  Google Scholar 

  25. Dominguez-Castro, R., Rodriguez-Vazquez, A., Medeiro, F., Huertas, J.L.: High resolution CMOS current comparators. In: Eighteenth European Solid State Circuits Conference, Denmark, pp. 242–245 (1992)

    Google Scholar 

  26. Ravezzi, L., Stoppa, D., Dallabetta, G.F.: Simple high-speed CMOS current comparator. Electron. Lett. 33, 1829–1830 (1997)

    Article  Google Scholar 

  27. Banks, D., Toumazou, C.: Low-power high-speed current comparator design. Electron. Lett. 44, 171–172 (2008)

    Article  Google Scholar 

  28. Fernandez, R., Cembrano, G., Castro, R., Vazquez, A.: A mismatch-insensitive high-accuracy high-speed continuous - time current comparator in low voltage CMOS. In: IEEE Proceedings of the Analog and Mixed Signal IC Design, pp. 303–306 (1997)

    Google Scholar 

  29. Shieh, M.S., Chen, P.S., Tsai, M.J., Lei, T.F.: A novel dynamic threshold voltage MOSFET (DTMOS) using heterostructure channel of Si1 yCy interlayer. IEEE Electron Device Lett. 26, 740–742 (2005)

    Article  Google Scholar 

  30. Kang, S.M., Leblebici, Y.: CMOS Digital Integrated Circuits: Analysis and Design. TMH, (2008)

    Google Scholar 

  31. Assaderaghi, F.: DTMOS: its derivatives and variations, and their potential applications. In: The 12th International Conference on Microelectronics, pp. 9–10 (2002)

    Google Scholar 

  32. Tsividis, Y.P.: Operation and Modeling of the MOS Transistor. Mc-Graw Hill, New York (1987)

    Google Scholar 

  33. Sedra, A., Smith, K.: Microelectronics Circuits. Oxford University Press, Oxford (1998)

    Google Scholar 

  34. Gupta, M., Aggarwal, P., Singh, P., Jindal, N.K.: Low voltage current mirrors with enhanced bandwidth. Analog Integr. Circuits Sig. Process. 59, 97–103 (2009)

    Article  Google Scholar 

  35. Sridhar, R., Pandey, N., Bhatia, V., Bhattacharyya, A.: High speed high resolution current comparator and its application to analog to digital converter. Springer J. Inst. Eng. India, Ser. B, 2250–2106 (2015). doi:10.1007/s40031-015-0189-1

  36. Sridhar, R., Pandey, N., Bhatia, V., Bhattacharyya, A.: On improving the performance of Traff’s comparator. In: IEEE 5th India International Conference on Power Electronics, pp. 1–4 (2012)

    Google Scholar 

  37. Uygur, A., Kuntman, H.: An ultra low-voltage, ultra low- power DTMOS-based CCII design for speech processing filters. In: The 8th International Conference on Electrical and Electronics Engineering, pp. 31–35 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veepsa Bhatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Bhatia, V., Pandey, N. (2017). A Novel Ultra Low Power Current Comparator. In: Singh, M., Gupta, P., Tyagi, V., Sharma, A., Ören, T., Grosky, W. (eds) Advances in Computing and Data Sciences. ICACDS 2016. Communications in Computer and Information Science, vol 721. Springer, Singapore. https://doi.org/10.1007/978-981-10-5427-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5427-3_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5426-6

  • Online ISBN: 978-981-10-5427-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics