Skip to main content

Improvement of Acoustic Trapping Capability by Punching Specific Holes on Acoustic Tweezers

  • Conference paper
  • First Online:
Advanced Computational Methods in Life System Modeling and Simulation (ICSEE 2017, LSMS 2017)

Abstract

It is found that small particles can be successfully manipulated by the acoustic tweezers. This paper presents a method to improve the acoustic trapping capability by punching specific round holes on two vibrating V-shaped metal strips of the acoustic tweezers. A particle is trapped under the sharp edges of metal strips with some specific round holes. Its trapping capability is improved under certain conditions compared with the original acoustic tweezers. A finite element model is developed to calculate the acoustic radiation force. The effects of the radius, the number and the arrangement of the round holes on the acoustic radiation force on the top surface of the particle are discussed. It is found that the acoustic radiation force increases obviously when the radius of the hole is more than a certain magnitude by changing the vibrational mode of the acoustic tweezers. With the increase of number and the row in vertical direction of the round holes, the acoustic radiation force acting on the particle increases correspondingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doblhoff-Dier, O., Gaida, T., Katinger, H., et al.: A novel ultrasonic resonance field device for the retention of animal cells. J. Biotechnol. Prog. 10(4), 428–432 (1994)

    Article  Google Scholar 

  2. Kosmala, A., Zhang, Q., Wright, R., et al.: Development of high concentrated aqueous silver nanofluid and inkjet printing on ceramic substrates. J. Mater. Chem. Phys. 132(2–3), 788–795 (2012)

    Article  Google Scholar 

  3. Ambedkar, B., Nagarajan, R., Jayanti, S.: Ultrasonic coal-wash for de-sulfurization. J. Ultrason. Sonochem. 18(3), 718–726 (2011)

    Article  Google Scholar 

  4. Castillo, J., Dimaki, M., Svendsen, W.E.: Manipulation of biological samples using micro and nano techniques. J. Integrative Biol. 1(1), 30–42 (2009)

    Article  Google Scholar 

  5. Lee, C., Lee, J., Lau, S.T, et al.: Single microparticle manipulation by an ultrasound microbeam. In: IEEE International Ultrasonics Symposium, pp. 849–852. IEEE Press (2010)

    Google Scholar 

  6. Wu, J.: Acoustical tweezers. J. Acoust. Soc. Am. 89(5), 2140–2143 (1991)

    Article  Google Scholar 

  7. Tran, S.B.Q., Marmottant, P., Thibault, P.: Fast acoustic tweezers for the two-dimensional manipulation of individual particles in microfluidic channels. J. Appl. Phys. Lett. 101(11), 1109–1111 (2012)

    Article  Google Scholar 

  8. Courtney, C.R.P., Demore, C.E.M., Wu, H., et al.: Independent trapping and manipulation of microparticles using dexterous acoustic tweezers. J. Appl. Phys. Lett. 104(15), 154103 (2014)

    Article  Google Scholar 

  9. Kang, S.T., Yeh, C.K.: Potential-well model in acoustic tweezers. J. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency. Control 57(6), 1451–1459 (2010)

    Google Scholar 

  10. Lee, J., Shung, K.K.: Radiation forces exerted on arbitrarily located sphere by acoustic tweezer. J. Acoust. Soc. Am. 120(2), 1084–1094 (2006)

    Article  Google Scholar 

  11. Shi, J., Ahmed, D., Mao, X., et al.: Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). J. Lab Chip 9(20), 2890–2895 (2009)

    Article  Google Scholar 

  12. Hu, J., Santoso, A.K.: A /spl pi/-shaped ultrasonic tweezers concept for manipulation of small particles. J. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency. Control 51(11), 1499–1507 (2004)

    Google Scholar 

  13. Gesellchen, F., Bernassau, A.L., Déjardin, T., et al.: Cell patterning with a heptagon acoustic tweezer–application in neurite guidance. J. Lab Chip 14(13), 2266–2275 (2014)

    Article  Google Scholar 

  14. Mitri, F.G.: Radiation force of acoustical tweezers on a sphere: The case of a high-order Bessel beam of quasi-standing waves of variable half-cone angles. J. Appl. Acoust. 71(5), 470–472 (2013)

    Article  Google Scholar 

  15. Hu, J., Yang, J., Xu, J.: Ultrasonic trapping of small particles by sharp edges vibrating in a flexural mode. J. Appl. Physics Lett. 85(24), 6042–6044 (2004)

    Article  Google Scholar 

  16. Hu, J., Xu, J., Yang, J., et al.: Ultrasonic collection of small particles by a tapered metal strip. J IEEE Trans Ultrason Ferroelectr Freq Control 53(3), 571–578 (2006)

    Article  Google Scholar 

  17. Liu, Y., Hu, J.: Trapping of particles by the leakage of a standing wave ultrasonic field. J. Appl. Phys. 106(3), 034903 (2006)

    Article  MathSciNet  Google Scholar 

  18. Liu, Y., Hu, J., Zhao, C.: Dependence of acoustic trapping capability on the orientation and shape of particles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1443–1450 (2010)

    Article  Google Scholar 

  19. Morfey, C.L.: Dictionary of Acoustics. Academic Press, San Diego, pp. 14–15 (2000)

    Google Scholar 

  20. Hasegawa, T., Kido, T., Iizuka, T., et al.: A general theory of Rayleigh and Langevin radiation pressures. J. Acoust. Soc. Jpn. 21(3), 145–152 (2000)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by Shanghai Young Eastern Scholar Talent Program (QD2015030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Yuan, H., Liu, Y. (2017). Improvement of Acoustic Trapping Capability by Punching Specific Holes on Acoustic Tweezers. In: Fei, M., Ma, S., Li, X., Sun, X., Jia, L., Su, Z. (eds) Advanced Computational Methods in Life System Modeling and Simulation. ICSEE LSMS 2017 2017. Communications in Computer and Information Science, vol 761. Springer, Singapore. https://doi.org/10.1007/978-981-10-6370-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6370-1_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6369-5

  • Online ISBN: 978-981-10-6370-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics