Skip to main content

A TopicRank Based Document Priors Model for Expert Finding

  • Conference paper
  • First Online:
Advanced Computational Methods in Life System Modeling and Simulation (ICSEE 2017, LSMS 2017)

Abstract

Document priors that encode our prior knowledge about the importance of different documents are essential to an expert finding system. This study proposed a TopicRank-based document priors model for expert finding. TopicRank algorithm is an extension of the DocRank algorithm. Latent dirichlet allocation was used to extract topics of the documents. We assumed there was a link between two documents that share common topics. Link analysis techniques were then used to obtain document priors. The proposed model was evaluated using the CSIRO Enterprise Research Collection and the results showed that the performance of the expert finding system was dramatically improved by introducing TopicRank-based document priors. In particular, Mean Average Precision increased 19.9% while Mean Reciprocal Rank rose as much as 23.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krisztian, B., Leif, A., Maarten, D.R.: A language modeling framework for expert finding. Inf. Process. Manage. 45, 1–19 (2009)

    Article  Google Scholar 

  2. Li, M., Liu, L., Li, C.-B.: An approach to expert recommendation based on fuzzy linguistic method and fuzzy text classification in knowledge management systems. Expert Syst. Appl. 38, 8586–8596 (2011)

    Article  Google Scholar 

  3. Guan, Z., Miao, G., McLoughlin, R., Yan, X., Cai, D.: Co-occurrence based diffusion for expert search on the web. IEEE Trans. Knowl. Data Eng. 25(5), 1–16 (2012)

    Google Scholar 

  4. Fang, Y., Si, L., Mathur, A.: Discriminative probabilistic models for expert search in heterogeneous information sources. Inf. Retrieval 14, 158–177 (2011)

    Article  Google Scholar 

  5. Yang, K.-W., Huh, S.-Y.: Automatic expert identification using a text categorization technique in knowledge management systems. Expert Syst. Appl. 34, 1445–1455 (2008)

    Article  Google Scholar 

  6. Balog, K., Rijke, M.D.: Combining candidate and document models for expert search. In: Proceedings of the Seventeenth Text Retrieval Conference (TREC 2008), NIST (2008)

    Google Scholar 

  7. Balog, K.: People search in the enterprise. Ph.D. University of Amsterdam, Amsterdam (2008)

    Google Scholar 

  8. Balog, K., Azzopardi, L., Rijke, M.D.: Formal models for expert finding in enterprise corpora. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 43–50. ACM, Seattle (2006)

    Google Scholar 

  9. Bordea, G.: Concept extraction applied to the task of expert finding. In: Aroyo, L., Antoniou, G., Hyvönen, E., Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6089, pp. 451–456. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13489-0_42

    Chapter  Google Scholar 

  10. Daud, A., Li, J., Zhou, L., Muhammad, F.: Temporal expert finding through generalized time topic modeling. Knowl. Based Syst. 23, 615–625 (2010)

    Article  Google Scholar 

  11. Deng, H., King, I., Lyu, M.R.: Formal models for expert finding on DBLP bibliography data. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 163–172 (2008)

    Google Scholar 

  12. Jiang, P., Yang, Q., Zhang, C., Niu, Z., Fu, H.: A probability model for related entity retrieval using relation pattern. In: Xiong, H., Lee, W.B. (eds.) KSEM 2011. LNCS, vol. 7091, pp. 318–330. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25975-3_28

    Chapter  Google Scholar 

  13. Agerri, R., Granados, R., García Serrano, A.: Enrichment of named entities for image photo retrieval. In: Detyniecki, M., García-Serrano, A., Nürnberger, A. (eds.) AMR 2009. LNCS, vol. 6535, pp. 101–110. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18449-9_9

    Chapter  Google Scholar 

  14. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  15. Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Landauer, T., McNamara, D.S., Dennis, S., Kintsch, W. (eds.) Handbook of Latent Semantic Analysis, vol. 427, pp. 424–440. Erlbaum, Hillsdale (2007)

    Google Scholar 

  16. Marmanis, H., Babenko, D.: Algorithms of the Intelligent Web. Manning, Greenwich (2009)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the Industrial Research Project of Science and Technology in Shaanxi Province (No. 2016GY-094), the Social Development Research Project of Science and Technology in Shaanxi Province (No. 2016SF-255), and the National Natural Science Foundation of China (Li Baojuan for No. 81301199, Liu Baohong for No. 61374185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojuan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Liu, J., Jia, B., Xu, H., Liu, B., Gao, D., Li, B. (2017). A TopicRank Based Document Priors Model for Expert Finding. In: Fei, M., Ma, S., Li, X., Sun, X., Jia, L., Su, Z. (eds) Advanced Computational Methods in Life System Modeling and Simulation. ICSEE LSMS 2017 2017. Communications in Computer and Information Science, vol 761. Springer, Singapore. https://doi.org/10.1007/978-981-10-6370-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6370-1_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6369-5

  • Online ISBN: 978-981-10-6370-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics