Skip to main content

A New Quantum-Behaved Particle Swarm Optimization with a Chaotic Operator

  • Conference paper
  • First Online:
Intelligent Computing, Networked Control, and Their Engineering Applications (ICSEE 2017, LSMS 2017)

Abstract

Particle Swarm Optimization has attracted many researcher to do further improvement on many real world problems. The quantum-behaved PSO is tested as an effective improved PSO for getting preferable results on many problems. In this paper, we introduce a chaotic operator into QPSO for further enhancing its global and local searching abilities. The experiments results show that, compared with the other PSOs, our algorithm gets more efficient results. It could be applied in more complex real world problems in our future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deb, K.: Optimization for Engineering Design: Algorithms and Examples. Prentice-Hall, New Delhi (1995)

    Google Scholar 

  2. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  3. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceeding IEEE International Conference on Neural Network, pp. 1942–1948. IEEE Press, New York (1995)

    Google Scholar 

  5. Sun, J., Palade, V., Wu, X.J., Fang, W.: Solving the power economic dispatch problem with generator constraints by random drift particle swarm optimization. IEEE Trans. Ind. Inform. 10, 222–232 (2014). IEEE Press, New York

    Article  Google Scholar 

  6. Gao, H., Pun, C.M., Kwong, S.: An efficient image segmentation method based on a hybrid particle swarm algorithm with learning strategy. Inf. Sci. 369, 500–521 (2016). Elsevier Press, Holland

    Article  MathSciNet  Google Scholar 

  7. Li, Y.Y., Jiao, L.C., Shang, R.H., Stolkin, R.: Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Inf. Sci. 294, 408–422 (2015). Elsevier Press, Holland

    Article  MathSciNet  Google Scholar 

  8. Ding, C., Choi, J., Tao, D., Davis, L.: Multi-directional multi-level dual-cross patterns for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38, 518–531 (2015). IEEE Press, New York

    Article  Google Scholar 

  9. Pehlivanoglu, Y.V.: A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks. IEEE Trans. Evol. Comput. 17, 436–452 (2013). IEEE Press, New York

    Article  Google Scholar 

  10. Chan, K.Y., Dillon, T.S., Kwong, C.K.: Modeling of a liquid epoxy molding process using a particle swarm optimization-base fuzzy regression approach. IEEE Trans. Ind. Inform. 7, 148–158 (2011). IEEE Press, New York

    Article  Google Scholar 

  11. Shen, K., Zhao, D., Mei, J., Tolbert, L.M.: Elimination of harmonics in a modular multilevel convert using particle swarm optimization-based staircase modulation strategy. IEEE Trans. Ind. Electron. 61, 5311–5322 (2014). IEEE Press, New York

    Article  Google Scholar 

  12. Sun, J., Feng, B., Xu, W.B.: Particle swarm optimization with particle having quantum behavior. In: IEEE Congress on Evolutionary Computation, pp. 325–331. IEEE Press, New York (1995)

    Google Scholar 

  13. Kolmogorov, A.N.: A new metric invariant of transient dynamical systems. Dok. Akad. Nauk SSSR, vol. 119, p. 861. Russian Press (1958)

    Google Scholar 

  14. Yao, X., Liu, Y.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3, 82–102 (1999). IEEE Press, New York

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Nature Science Foundation of China (Nos. 61571236, 61533010, 61602255 and 61320106008), the Macau Science and Technology Fund (FDCT 093/2014/A2, 008/2013/A1), the Research Committee of University of Macau (MYRG2015-00011-FST, MYRG2015-00012-FST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wu, Z., Wu, D., Hu, H., Wang, C., Gao, H. (2017). A New Quantum-Behaved Particle Swarm Optimization with a Chaotic Operator. In: Yue, D., Peng, C., Du, D., Zhang, T., Zheng, M., Han, Q. (eds) Intelligent Computing, Networked Control, and Their Engineering Applications. ICSEE LSMS 2017 2017. Communications in Computer and Information Science, vol 762. Springer, Singapore. https://doi.org/10.1007/978-981-10-6373-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6373-2_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6372-5

  • Online ISBN: 978-981-10-6373-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics