Skip to main content

The Research on Cascading Failure of Farey Network

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2017)

Abstract

Cascading failure is an important part of the dynamics in complex network. In this paper, we research the cascading failure of Farey network which is scale-free network with fractal properties by data analysis. According to the analyses, we obtain an iterative expression of the failure nodes’ number at the certain time step, anther iterative expression of the time which is needed for the network being global collapse, and the sequence of nodes failure in the Farey network. By theoretical derivation, we get an approximate solutions of perturbation threshold R to make the network achieve the global collapse. If the nodes number of the Farey network is lager, simulate results are closer to theoretical value. By the simulation, we obtain the cascading failure process of the Farey network after suffering deliberate attack and random attack. Simulation results show that, the failure nodes of Farey network increase gradually as R raises, until the network is global collapse. Moreover, Farey network shows stronger robustness for random attack. abstract environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, R., Albert, I., Nakarado, G.L.: Structural vulnerability of the north American power grid. Phys. Rev. E 69(2 Pt 2), 025103 (2004)

    Article  Google Scholar 

  2. Albert, R., Jeong, H.: Internet: diameter of the world-wide web. Nature 401(6), 130–131 (1999)

    Google Scholar 

  3. Bao, Z.J., Cao, Y.J.: Cascading failures in local-world evolving networks. J. Zhejiang Univ.-SCIENCE A 9(10), 1336–1340 (2008)

    Article  MATH  Google Scholar 

  4. Barabsi, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berlow, E.L., Neutel, A.M., Cohen, J.E., Ruiter, P.C.D., Bo, E., Emmerson, M., Fox, J.W., Jones, J.I., Kokkoris, G.D., Logofet, D.O.: Interaction strengths in food webs: issues and opportunities. J. Anim. Ecol. 73(3), 585–598 (2004)

    Article  Google Scholar 

  6. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025 (2010)

    Article  Google Scholar 

  7. Buldyrev, S., Kadish, B., Shere, N., Aharon, M., Cwilich, G.: Cascades of failures in various models of interdependent networks. In: APS Meeting (2012)

    Google Scholar 

  8. Cheng, Z., Cao, J.: Cascade of failures in interdependent networks coupled by different type networks. Phys. A Stat. Mech. Appl. 430, 193–200 (2015)

    Article  Google Scholar 

  9. Cho, W., Goh, K.I., Kim, I.M.: Correlated couplings and robustness of coupled networks. Physics (2010)

    Google Scholar 

  10. Christiansen, M.H., Kirby, S.: Language evolution: consensus and controversies. Trends Cogn. Sci. 7(7), 300–307 (2003)

    Article  Google Scholar 

  11. Colbourn, C.J.: Farey series and maximal outerplanar graphs. SIAM J. Algebraic Discrete Methods 3(2), 187–189 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colizza, V., Barrat, A., Barthlemy, M., Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Nat. Acad. Sci. 103(7), 2015–2020 (2006)

    Article  Google Scholar 

  13. Dombrowsky, W.R.: Again and again: is a disaster what we call a ‘disaster’? Int. J. Mass Emerg. Disasters 13(3), 241–254 (1995)

    Google Scholar 

  14. Dong, G., Gao, J., Du, R., Tian, L., Stanley, H.E., Havlin, S.: Robustness of network of networks under targeted attack. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 87(5), 052804 (2013)

    Article  Google Scholar 

  15. Dong, G., Tian, L., Du, R., Fu, M., Stanley, H.E.: Analysis of percolation behaviors of clustered networks with partial support-dependence relations. Physica A Stat. Mech. Appl. 394(2), 370–378 (2014)

    Article  MathSciNet  Google Scholar 

  16. Dong, G., Tian, L., Zhou, D., Du, R., Xiao, J., Stanley, H.E.: Robustness of n interdependent networks with partial support-dependence relationship. EPL 102(102), 68004 (2013)

    Article  Google Scholar 

  17. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks with aging of sites. Phys. Rev. E Stat. Phys. Plasmas Fluids Related Interdisc. Topics 62(2 Pt A), 1842 (2000)

    Google Scholar 

  18. Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 85(6 Pt 2), 066134 (2012)

    Article  Google Scholar 

  19. Guimer, R., Amaral, L.A.N.: Modeling the world-wide airport network. Eur. Phys. J. B 38(2), 381–385 (2004)

    Article  Google Scholar 

  20. Guimer, R., Mossa, S., Turtschi, A., Amaral, L.A.N., Wachter, K.W.: The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc. Nat. Acad. Sci. 102(22), 7794–7799 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Institute of Physics Publishing, Bristol (1979)

    MATH  Google Scholar 

  22. Havlin, S.: Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E: Stat., Nonlin, Soft Matter Phys. 83(2), 1127–1134 (2011)

    MathSciNet  Google Scholar 

  23. Huang, L., Lai, Y.C., Chen, G.: Understanding and preventing cascading breakdown in complex clustered networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 78(3 Pt 2), 036116 (2008)

    Article  Google Scholar 

  24. Kinney, R., Crucitti, P., Albert, R., Latora, V.: Modeling cascading failures in the north american power grid. Eur. Phys. J. B 46(1), 101–107 (2005)

    Article  Google Scholar 

  25. Moreno, Y., Gomez, J.P.A.: Instability of scale-free networks under node-breaking avalanches. Europhys. Lett. 58, 630–636 (2002)

    Article  Google Scholar 

  26. Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 66(2), 065102 (2002)

    Google Scholar 

  27. Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer viruses. Phys. Rev. E 66, 1162–1167 (2002)

    Google Scholar 

  28. Redner, S.: How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B 4(2), 131–134 (1998)

    Article  Google Scholar 

  29. Roopnarine, P.: Extinction cascades and catastrophe in ancient food webs. Paleobiology 32(1), 1–19 (2006)

    Article  Google Scholar 

  30. Schneider, J.J., Hirtreiter, C.: The impact of election results on the member numbers of the large parties in Bavaria and Germany. Int. J. Mod. Phys. C 16(8), 1165–1215 (2011)

    Article  MATH  Google Scholar 

  31. Shao, S., Huang, X., Stanley, H.E., Havlin, S.: Robustness of a partially interdependent network formed of clustered networks. Phys. Rev. E 89(3), 032812 (2013)

    Article  Google Scholar 

  32. Su, Z., Li, L., Peng, H., Kurths, J., Xiao, J., Yang, Y.: Robustness of interrelated traffic networks to cascading failures. Sci. Rep. 4, 5413 (2014)

    Article  Google Scholar 

  33. Wang, J., De, W.P.: Properties of evolving e-mail networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70(2), 066121 (2004)

    Article  Google Scholar 

  34. Wang, X.F., Xu, J.: Cascading failures in coupled map lattices. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70(5 Pt 2), 056113 (2004)

    Article  Google Scholar 

  35. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)

    Article  MATH  Google Scholar 

  36. Weisstein, E.W.: Farey sequence. MathWorld-A Wolfram Web Resource (2014). http://mathworld.wolfram.com/FareySequence.html

  37. Wu, J.J., Gao, Z.Y., Sun, H.J.: Cascade and breakdown in scale-free networks with community structure. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 74(6 Pt 2), 066111 (2006)

    Article  Google Scholar 

  38. Xia, Y., Fan, J., Hill, D.: Cascading failure in wattscstrogatz small-world networks. Phys. A Stat. Mech. Appl. 389(6), 1281–1285 (2010)

    Article  Google Scholar 

  39. Xu, J., Wang, X.F.: Cascading failures in scale-free coupled map lattices. IEEE Int. Symp. Circ. Syst. 4, 3395–3398 (2005)

    Google Scholar 

  40. Yaǧan, O., Gligor, V.: Analysis of complex contagions in random multiplex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 86(3 Pt 2), 036103 (2012)

    Google Scholar 

  41. Yuan, X., Shao, S., Stanley, H.E., Havlin, S.: The influence of the broadness of the degree distribution on network’s robustness: comparing localized attack and random attack. Phys. Rev. E 92, 032122 (2015)

    Article  Google Scholar 

  42. Zhang, Z., Comellas, F.: Farey graphs as models for complex networks. Theoret. Comput. Sci. 412(8–10), 865–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zheng, J.F., Gao, Z.Y., Zhao, X.M.: Clustering and congestion effects on cascading failures of scale-free networks. EPL 79(5), 58002 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 61603206) and the Nature Science Foundation from Qinghai Province (No. 2017-ZJ-949Q).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujuan Ma .

Editor information

Editors and Affiliations

Appendix

Appendix

In order to explain the recursive expressions in Subsect. 3.1, we give the following example. In Fig. 4, there are 17 nodes in the network \((N=17)\). We add a perturbation to node 6 at time step 5, i.e. \(t_{start}=5\). Start the recursive as follows:

At initial moment, there is only one failure node at time step 5, and it is node 6 , i.e. \(f_5=\{6\}\), \(N_t=\{6\}\), \(I_5=|N_5|=1\).

At time step 6, we have \(f_6=\bigcup \limits _{i\in f_5}n_5(i)=n_5(6)=\{3, 4, 10, 11\}\). \(N_6=N_5\cup f_6=\{3, 4, 6, 10, 11\}\), \(I_6=|N_6|=5\).

At time step 7, we get

\(f_7=\bigcup \limits _{i\in f_6}n_6(i)=n_6(3)\cup n_6(4)\cup n_6(10)\cup n_6(11)\)

\(=\{1, 2, 5, 8, 15\}\cup \{1, 7, 12\}\cup \emptyset \cup \emptyset \)

\(=\{1, 2, 5, 7, 8, 12, 15\}\)

\(N_7=N_6\cup f_7=\{1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15\}\), \(I_7=|N_7|=12\).

At time step 8, we obtain

\(f_8=\bigcup \limits _{i\in f_7}n_7(i)=n_7(1)\cup n_7(2)\cup n_7(5)\cup n_7(7)\cup n_7(8)\cup n_7(12)\cup n_7(15)\)

\(=\{13\}\cup \{9, 17\}\cup \{9, 14, 16\}\cup \{13\}\cup \{14\}\cup \emptyset \cup \emptyset \)

\(=\{9, 13, 14, 16, 17\}\)

\(N_8\!=\!N_7\cup f_8\!=\!\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17\}\), \(I_8\!=\!|N_8|\!=\!17\).

If \(I_t=N\), then the recursive is over.

Fig. 4.
figure 4

The farey network of T = 4, the number of nodes is 17. The nodes are ordered with their order joined in the network.

  1. (2)

    In the front example, suppose the attacked node is node 6. According to Fig. 4, obviously we have

\(d(6, 3)=d(6, 4)=d(6, 10)=d(6, 11)=1\);

\(d(6, 1)=d(6, 2)=d(6, 5)=d(6, 7)=d(6, 8)=d(6, 12)=d(6, 15)=2\);

\(d(6, 9)=d(6, 13)=d(6, 14)=d(6, 17)=3\).

So, \(t_{end}=t_{start}+max\{d(6, i),\ i\ne 6,\ i=1, 2, \dots N\}=t_{start}+max\{1, 2, 3\}=5+3=8\). It means that the network \(F_4\) is complete collapse at time step 8.

  1. (3)

    The sequence of failure nodes

In the above example, when attack node 6, the first group of failure nodes are 3, 4, 10, 11. All the length of the shortest pathes between node 6 and nodes 3, 4, 10, 11 are 1. All the length of the shortest pathes between node 6 and nodes 9, 13, 14, 17 are 3, thus nodes 9, 13, 14, 17 are the last group of failure nodes.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Ma, X., Ma, F. (2017). The Research on Cascading Failure of Farey Network. In: Zou, B., Li, M., Wang, H., Song, X., Xie, W., Lu, Z. (eds) Data Science. ICPCSEE 2017. Communications in Computer and Information Science, vol 727. Springer, Singapore. https://doi.org/10.1007/978-981-10-6385-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6385-5_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6384-8

  • Online ISBN: 978-981-10-6385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics