Skip to main content

Spatial-Temporal Event Detection Method with Multivariate Water Quality Data

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 727))

  • 2565 Accesses

Abstract

With the rapid development of the society, water contamination events cause great loss if the accidents happen in the water supply system. A large number of sensor nodes of water quality are deployed in the water supply network to detect and warn the contamination events to prevent pollution from speading. If all of sensor nodes detect and transmit the water quality data when the contamination occurs, it results in the heavy communication overhead. To reduce the communication overhead, the Connected Dominated Set construction algorithm-Rule K, is adopted to select a part fo sensor nodes. Moreover, in order to improve the detection accuracy, a Spatial-Temporal Abnormal Event Detection Algorithm with Multivariate water quality data (M-STAEDA) was proposed. In M-STAEDA, first, Back Propagation neural network models are adopted to analyze the multiple water quality parameters and calculate the possible outliers. Then, M-STAEDA algorithm determines the potential contamination events through Bayesian sequential analysis to estimate the probability of a contamination event. Third, it can make decision based on the multiple event probabilities fusion. Finally, a spatial correlation model is applied to determine the spatial-temporal contamination event in the water supply networks. The experimental results indicate that the proposed M-STAEDA algorithm can obtain more accuracy with BP neural network model and improve the rate of detection and the false alarm rate, compared with the temporal event detection of Single Variate Temporal Abnormal Event Detection Algorithm (M-STAEDA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heidemann, J., Stojanovic, M., Zorzi, M.: Underwater sensor networks: applications, advances and challenges. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 370, 158–175 (2012)

    Article  Google Scholar 

  2. Eliades, D.G., Lambrou, T.P., Panayiotou, C.G., Polycarpou, M.M.: Contamination event detection in water distribution systems using a model-based Approach. Procedia Eng. 89, 1089–1096 (2014)

    Article  Google Scholar 

  3. Yang, J.Y., Haught, C.R., Goodrich, A.J.: Real-time contaminant detection and classification in a drinking water pipe using conventional water quality sensors: techniques and experimental results. J. Environ. Manag. 90(8), 2494–2506 (2009)

    Article  Google Scholar 

  4. Huang, T., Ma, X., Ji, X., Tang, S.: online detecting spreading events with the spatio-temporal relationship in water distribution networks. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS, vol. 8346, pp. 145–156. Springer, Heidelberg (2013). doi:10.1007/978-3-642-53914-5_13

    Chapter  Google Scholar 

  5. Stotey, M.V., Gaag, B.V.D., Burns, B.P.: Advances in on-line drinking water quality monitoring and early warning systems. Water Res. 45(2), 741–747 (2011)

    Article  Google Scholar 

  6. Yim, S.J., Choi, Y.H.: Fault-tolerant event detection using two thresholds in wireless sensor networks. In: Proceedings of the 15th IEEE Pacific Rim International Symposium on Dependable Computing. Picataway, pp. 331–335. IEEE (2009)

    Google Scholar 

  7. Xue, W., Luo, Q., Wu, H.: Pattern-based event detection in sensor networks. Distrib. Parallel Databases 30(1), 27–62 (2012)

    Article  Google Scholar 

  8. Byer, D., Carlson, K.H.: Expanded summary: real-time detection of intentional chemical contamination in the distribution system. J. Am. Water Works Assoc. 97(7), 130–133 (2005)

    Google Scholar 

  9. Wang, X.R., Lizier, J.T., Obst, O., Prokopenko, M., Wang, P.: Spatiotemporal anomaly detection in gas monitoring sensor networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 90–105. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77690-1_6

    Chapter  Google Scholar 

  10. Uusital, L.: Advantages and challenges of Bayesian networks in environmental modelling. Ecol. Model. 203(3), 312–318 (2014)

    Google Scholar 

  11. Piao, D., Menon, P.G., Mengshoel, O.J.: Computing probabilistic optical flow using markov random fields. In: Zhang, Y.J., Tavares, J.M.R.S. (eds.) CompIMAGE 2014. LNCS, vol. 8641, pp. 241–247. Springer, Cham (2014). doi:10.1007/978-3-319-09994-1_22

    Google Scholar 

  12. Hou, D., Chen, Y., Zhao, H., et al.: Based on RBF neural network and wavelet analysis the water quality of anomaly detection method. Transducer Microsyst. Technol. 32(2), 138–141 (2013)

    Google Scholar 

  13. Peremlan, L., Ostfeld, A.: Bayesian networks for source intrusion detection. J. Water Resour. Plan. Manag. 139(4), 426–432 (2012)

    Google Scholar 

  14. Byer, D., Carlson, K.: Expanded summary: real-time detection of intentional chemical contamination in the distribution system. J. Am. Water Works Assoc. 97, 130–133 (2005)

    Google Scholar 

  15. Jarrett, R., Robinson, G., O’Halloran, R.: On-line monitoring of water distribution systems: data processing and anomaly detection. In: Proceedings of Water Distribution Systems Analysis Symposium, Cincinnati, Ohio, USA (2006)

    Google Scholar 

  16. Kroll, D., King, K.: Laboratory and flow loop validation and testing of the operational effectiveness of an on-line security platform for the water distribution system. In: Proceedings of Water Distribution Systems Analysis Symposium, pp. 1–16 (2006)

    Google Scholar 

  17. Perelman, L., Arad, J., Housh, M., Ostfeld, A.: Event detection in water distribution systems from multivariate water quality time series. Environ. Sci. Technol. 46, 8212–8219 (2012)

    Article  Google Scholar 

  18. Arad, J., Housh, M., Perelman, L., Ostfeld, A.: A dynamic thresholds scheme for contaminant event detection in water distribution systems. Water Res. 47, 1899–1908 (2013)

    Article  Google Scholar 

  19. Hart, D., McKenna, S.: CANARY User’s Manual, 4.1 edn., National Security Applications Dept., Sandia National Laboratories, Albuquerque, NM 87185-0735 (2009)

    Google Scholar 

  20. Murray, R., Haxton, T., Janke, R., Hart, W.E., Berry, J., Phillips, C.: Water quality event detection systems for drinking water contamination warning systems—development, testing, and application of CANARY. Technical report, EPA/600/R-10/036 U.S. EPA (2010)

    Google Scholar 

  21. Murray, S., Ghazali, M., McBean, E.A.: Real-time water quality monitoring: assessment of multisensor data using Bayesian belief networks. J. Water Res. Plan. Manag. 138, 63–70 (2011)

    Article  Google Scholar 

  22. Kong, Y.H., Jing, M.L.: Classification method based on confusion matrix and the integrated learning research. Comput. Eng. Sci 34(6), 111–117 (2012)

    Google Scholar 

  23. Murray, R., Haxton, T., et al: Water quality event detection systems for drinking water contamination warning systems: development testing and application of CANARY. US Environmental Protections Agency (2010)

    Google Scholar 

  24. Mckenna, S.A., Klise, K.A.: Multivariate applications for detecting anomalous water quality. American Society of Civil Engineers (247) (2010)

    Google Scholar 

  25. Mckenna, S.A., Wilson, M., Klise, K.A.: Detecting Changes in Water Quality Data. J. Am. Water Works Assoc. 77(1), 74–85 (2008)

    Google Scholar 

  26. Jayaraman, P.P., Yavari, A., Georagakopoulos, D., Morshed, A., Zaslavsky, A.: Internet of things platform for smart farming: experiences and lessons learnt. Sensors 16(11), 1884 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China under Grant Nos. 2013BAB06B04, 2016YFC0400910, 2017ZX07104-001; the Fundamental Research Funds for the Central Universities under Grant No. 2015B22214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchi Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Mao, Y., Li, Z., Chen, X., Wang, L. (2017). Spatial-Temporal Event Detection Method with Multivariate Water Quality Data. In: Zou, B., Li, M., Wang, H., Song, X., Xie, W., Lu, Z. (eds) Data Science. ICPCSEE 2017. Communications in Computer and Information Science, vol 727. Springer, Singapore. https://doi.org/10.1007/978-981-10-6385-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6385-5_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6384-8

  • Online ISBN: 978-981-10-6385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics