Skip to main content

Constant Envelope OFDM RadCom System

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 463))

  • 168 Accesses

Abstract

A joint radar and communication system would constitute a unique platform for future intelligent transportation networks effecting the essential tasks of environmental sensing and wireless communication. While the inherent high peak-to-average power ratio (PAPR) question of OFDM system cannot be solved. This paper introduces a constant envelope multi-carrier RadCom approach with the advantages of high data rate, high ability of anti-fading, simple radar processing, and constant 0 dB PAPR. Constant envelope OFDM RadCom system is able to solve the high PAPR question perfectly, promote efficiency of power amplifier and resistance to fading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, A.U., Thompson, S.C., Zeidler, J.R.: Channel estimation and equalization for CE-OFDM in multipath fading channels. In: IEEE MILCOM, San Diego, CA, USA, pp. 1–7 (2008)

    Google Scholar 

  2. Braun, M., Sturm, C., Jondral, F.K.: Maximum likelihood speed and distance estimation for OFDM radar. In: IEEE Radar Conference, pp. 256–261 (2010)

    Google Scholar 

  3. Cimini, L.J.: Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun. 33(7), 665–675 (1985)

    Google Scholar 

  4. Dardari, D., Tralli, V., Vaccari, A.: A theoretical characterization of nonlinear distortion effects in OFDM systems. IEEE Trans. Commun. 48(10), 1755–1764 (2014)

    Google Scholar 

  5. Jia, M., Gu, X., Guo, Q., et al.: Broadband hybrid satellite-terrestrial communication systems based on cognitive radio toward 5G. IEEE Wirel. Commun. 23(6), 96–106 (2017)

    Google Scholar 

  6. Jia, M., Wang, X., Gu, X., et al.: A simplified multiband sampling and detection method based on MWC structure for mm wave communications in 5G wireless networks. Int. J. Antennas Propag. 1–10 (2015)

    Google Scholar 

  7. Jia, M., Wang, L., Yin, Z., et al.: A novel spread slotted ALOHA based on cognitive radio for satellite communications system. EURASIP J. Wirel. Commun. Netw. 2015, 232 (2016)

    Google Scholar 

  8. Sturm, C., Wiesbeck, W.: Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proc. IEEE 99(7), 1236–1259 (2011)

    Google Scholar 

  9. Sit, Y.L., Sturm, C., Zwick, T., et al.: The OFDM joint radar-communication system: an overview. In: The Third SPACOMM, Budapest, Hungary, pp. 69–74 (2011)

    Google Scholar 

  10. Sturm, C., Pancera, E., Zwick, T., et al.: A novel approach to OFDM radar processing. In: IEEE Radar Conference, pp. 1–4 (2009)

    Google Scholar 

  11. Sturm, C., Braun, M., Zwick, T., et al.: A multiple target doppler estimation algorithm for OFDM based intelligent radar systems. In: 2010 European Radar Conference, pp. 73–76 (2010)

    Google Scholar 

  12. Sturm, C., Zwick, T., Wiesbeck, W., et al.: Performance verification of symbol-based OFDM radar processing. In: IEEE Radar Conference, pp. 60–63 (2010)

    Google Scholar 

  13. Thompson, S.C., Ahmed, A.U., Proakis, J.G., et al.: Constant envelope OFDM. IEEE Trans. Commun. 56(8), 1300–1312 (2008)

    Google Scholar 

  14. Thompson, S.C., Proakis, J.G., Zeidler, J.R.: Constant envelope OFDM in multipath Rayleigh fading channels. In: IEEE MILCOM, pp. 1–7 (2006)

    Google Scholar 

  15. Tsai, Y., Zhang, G., Pan, J.L.: Orthogonal frequency division multiplexing with phase modulation and constant envelope design. In: IEEE MILCOM, pp. 2658–2664 (2005)

    Google Scholar 

  16. Tsao, T., Slamani, M., Varshney, P., et al.: Ambiguity function for a bistatic radar. IEEE Trans. Aerosp. Electron. Syst. 33(3), 1041–1051 (1997)

    Google Scholar 

Download references

Acknowledgement

The work is jointly supported by the MOST Program of International S&T Cooperation (Grant No. 2016YFE0123200), National Natural Science Foundation of China (Grant No. 61471100/61101090/61571082), Science and Technology on Electronic Information Control Laboratory (Grant No. 6142105040103) and Fundamental Research Funds for the Central Universities (Grant No. ZYGX2015J012/ZYGX2014Z005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y., Luo, Q., Ma, S., Hu, S., Gao, Y. (2019). Constant Envelope OFDM RadCom System. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2017. Lecture Notes in Electrical Engineering, vol 463. Springer, Singapore. https://doi.org/10.1007/978-981-10-6571-2_109

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6571-2_109

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6570-5

  • Online ISBN: 978-981-10-6571-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics