Skip to main content

An Updating Discrete Graph-Based Capacity Analytical Framework for Satellite Disruption-Tolerant Networks

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 463))

  • 103 Accesses

Abstract

In the satellite Disruption-Tolerant Networks (DTN), capacity of multi-path delivery is quite susceptible to a quasi-deterministic topology with limited resource in nodes. Currently, the space-time graph and event-driven graph, proposed for capturing the dynamics of DTN-inbuilt satellite networks, will incur excess demands of computation and storage with dispensable quantization errors. In this paper, we construct an updating discrete graph (UDG) based algorithmic model to make quantitative analysis on the capacity of a DTN-inbuilt Multiple Satellites and Multiple Ground Stations (MSMGS) networks. In particular, a network capacity analytical framework is established by solving a corresponding maximum flow problem with delivery delay and transmission constraints. The numerical results show that, compared with space-time graph and event-driven graph methods, the proposed method presents obvious improvements with respect to expected network capacity with limited complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, Z., Zhang, G., Dong, F., Xie, Z., Bian, D.: Capacity model and constraints analysis for integrated remote wireless sensor and satellite network in emergency scenarios. Sensors 15(11), 29036–29055 (2015)

    Google Scholar 

  2. Diana, R., Lochin, E., Franck, L., Baudoin, C., Dubois, E., Gelard, P.: A DTN routing scheme for quasi-deterministic networks with application to LEO satellites topology. In: 2012 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5. IEEE, September 2012

    Google Scholar 

  3. Yang, Y., Xu, M., Wang, D., Wang, Y.: Towards energy-efficient routing in satellite networks. IEEE J. Sel. Areas Commun. 34(12), 3869–3886 (2016)

    Google Scholar 

  4. Caini, C., Cruickshank, H., Farrell, S., Marchese, M.: Delay-and disruption-tolerant networking (DTN): an alternative solution for future satellite networking applications. Proc. IEEE 99(11), 1980–1997 (2011)

    Google Scholar 

  5. Araniti, G., Bezirgiannidis, N., Birrane, E., Bisio, I., Burleigh, S., Caini, C., Suzuki, K.: Contact graph routing in DTN space networks: overview, enhancements and performance. IEEE Commun. Mag. 53(3), 38–46 (2015)

    Google Scholar 

  6. Merugu, S., Ammar, M.H., Zegura, E.W.: Routing in space and time in networks with predictable mobility. Georgia Institute of Technology (2004)

    Google Scholar 

  7. Yuan, P., Yang, Z., Li, Y., Zhang, Q.: An event-driven graph-based min-cost delivery algorithm in earth observation DTN networks. In: 2015 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6. IEEE, October 2015

    Google Scholar 

  8. Bezirgiannidis, N., Burleigh, S., Tsaoussidis, V.: Delivery time estimation for space bundles. IEEE Trans. Aerosp. Electron. Syst. 49(3), 1897–1910 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their high appreciations to the supports from the National Natural Science Foundation of China (61571156), National Science and Technology Major Project (91538110), and Natural Science Foundation of Guangdong Province (2016A030313661).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinyu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, P., Yang, Z., He, N., Zhang, Q. (2019). An Updating Discrete Graph-Based Capacity Analytical Framework for Satellite Disruption-Tolerant Networks. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2017. Lecture Notes in Electrical Engineering, vol 463. Springer, Singapore. https://doi.org/10.1007/978-981-10-6571-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6571-2_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6570-5

  • Online ISBN: 978-981-10-6571-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics