Abstract
As an indispensable defensive measure of network security, the intrusion detection is a process of monitoring the events occurring in a computer system or network and analyzing them for signs of possible incidents. It is a classifier to judge the event is normal or malicious. The information used for intrusion detection contains some redundant features which would increase the difficulty of training the classifier for intrusion detection and increase the time of making predictions. To simplify the training process and improve the efficiency of the classifier, it is necessary to remove these dispensable features. in this paper, we propose a novel LA-SVM scheme to automatically remove redundant features focusing on intrusion detection. This is the first application of learning automata for solving dimension reduction problems. The simulation results indicate that the LA-SVM scheme achieves a higher accuracy and is more efficient in making predictions compared with traditional SVM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Scarfone, K., Mell, P.: Guide to intrusion detection and prevention systems (IDPS). NIST Spec. Publ. 800(2007), 94 (2007)
Chen, W.H., Hsu, S.H., Shen, H.P.: Application of SVM and ANN for intrusion detection. Comput. Oper. Res. 32(10), 2617–2634 (2005)
Zhao, M., Chow, T.W.S., Wu, Z., Zhang, Z., Li, B.: Learning from normalized local and global discriminative information for semi-supervised regression and dimensionality reduction. Inf. Sci. 324, 286–309 (2015)
Narendra, K.S., Thathachar, M.A.: Learning Automata: An Introduction. Courier Corporation, North Chelmsford (2012)
Esnaashari, M., Meybodi, M.R.: Data aggregation in sensor networks using learning automata. Wireless Netw. 16(3), 687–699 (2010)
Jiang, W., Zhao, C.L., Li, S.H., Chen, L.: A new learning automata based approach for online tracking of event patterns. Neurocomputing 137, 205–211 (2014)
Nicopolitidis, P., Papadimitriou, G.I., Pomportsis, A.S.: Using learning automata for adaptive push-based data broadcasting in asymmetric wireless environments. IEEE Trans. Veh. Technol. 51(6), 1652–1660 (2002)
Hernández-Pereira, E., Suárez-Romero, J.A., Fontenla-Romero, O., Alonso-Betanzos, A.: Conversion methods for symbolic features: a comparison applied to an intrusion detection problem. Expert Syst. Appl. 36(7), 10612–10617 (2009)
Acknowledgements
This research work is funded by the State Grid Corporation of China (SGCC) Science and Technology Project (SGRIXTKJ [2017] 133), the National Key Research and Development Project of China (2016YFB0801003), and the Key Laboratory for Shanghai Integrated Information Security Management Technology Research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Di, C., Su, Y., Han, Z., Li, S. (2019). Learning Automata Based SVM for Intrusion Detection. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2017. Lecture Notes in Electrical Engineering, vol 463. Springer, Singapore. https://doi.org/10.1007/978-981-10-6571-2_252
Download citation
DOI: https://doi.org/10.1007/978-981-10-6571-2_252
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-6570-5
Online ISBN: 978-981-10-6571-2
eBook Packages: EngineeringEngineering (R0)