Skip to main content

Spiking Neural P Systems with Minimal Parallelism

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 791))

  • 1122 Accesses

Abstract

This paper is an attempt to relax the condition of using the rules in a maximally parallel manner in the framework of spiking neural P systems with exhaustive use of rules. To this aim, we consider the minimal parallelism of using rules: if one rule associated with a neuron can be used, then the rule must be used at least once (but we do not care how many times). In this framework, we study the computational power of our systems as number generating devices. Weak as it might look, this minimal parallelism still leads to universality, even when we eliminate the delay between firing and spiking and the forgetting rules at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston (1996)

    Google Scholar 

  2. Ghosh-Dastidar, S., Adeli, H.: Spiking neural networks. Int. J. Neur. Syst. 19, 295–308 (2009)

    Article  Google Scholar 

  3. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fund. Inform. 71, 279–308 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Cavaliere, M., Ibarra, O.H., Păun, G., Egecioglu, O., Ionescu, M., Woodworth, S.: Asynchronous spiking neural P systems. Theor. Comput. Sci. 410, 2352–2364 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Pan, L., Păun, G.: Spiking neural P systems with anti-spikes. Int. J. Comput. Commun. 4, 273–282 (2009)

    Article  Google Scholar 

  6. Ionescu, M., Păun, G., Pérez-Jiménez, M.J., Yokomori, T.: Spiking neural dP systems. Fund. Inform. 111, 423–436 (2011)

    MATH  MathSciNet  Google Scholar 

  7. Pan, L., Wang, J., Hoogeboom, H.J.: Spiking neural P systems with astrocytes. Neural Comput. 24, 805–825 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pan, L., Zeng, X., Zhang, X., Jiang, Y.: Spiking neural P systems with weighted synapses. Neural Process. Lett. 35, 13–27 (2012)

    Article  Google Scholar 

  9. Song, T., Pan, L., Păun, G.: Spiking neural P systems with rules on synapses. Theor. Comput. Sci. 529, 82–95 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wang, J., Hoogeboom, H.J., Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with weights. Neural Comput. 22, 2615–2646 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Song, T., Liu, X., Zeng, X.: Asynchronous spiking neural P systems with anti-spikes. Neural Process. Lett. 42, 633–647 (2015)

    Article  Google Scholar 

  12. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. Nanobiosci. 14, 465–477 (2015)

    Article  Google Scholar 

  13. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. Nanobiosci. 14, 38–44 (2015)

    Article  Google Scholar 

  14. Song, T., Gong, F., Liu, X., Zhao, Y., Zhang, X.: Spiking neural P systems with white hole neurons. IEEE Trans. Nanobiosci. 15, 666–673 (2016)

    Article  Google Scholar 

  15. Zhao, Y., Liu, X., Wang, W., Adamatzky, A.: Spiking neural P systems with neuron division and dissolution. PLoS ONE 11, e0162882 (2016)

    Article  Google Scholar 

  16. Wu, T., Zhang, Z., Păun, G., Pan, L.: Cell-like spiking neural P systems. Theor. Comput. Sci. 623, 180–189 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jiang, K., Chen, W., Zhang, Y., Pan, L.: Spiking neural P systems with homogeneous neurons and synapses. Neurocomputing 171, 1548–1555 (2016)

    Article  Google Scholar 

  18. Song, T., Pan, L.: Spiking neural P systems with request rules. Neurocomputing 193, 193–200 (2016)

    Article  Google Scholar 

  19. Ibarra, O.H., Păun, A., Rodríguez-Patón, A.: Sequential SNP systems based on min/max spike number. Theor. Comput. Sci. 410, 2982–2991 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Neary, T.: A boundary between universality and non-universality in extended spiking neural P systems. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 475–487. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13089-2_40

    Chapter  Google Scholar 

  21. Song, T., Pan, L., Jiang, K., Song, B., Chen, W.: Normal forms for some classes of sequential spiking neural P systems. IEEE Trans. Nanobiosci. 12, 255–264 (2013)

    Article  Google Scholar 

  22. Zhang, X., Zeng, X., Luo, B., Pan, L.: On some classes of sequential spiking neural P systems. Neural Comput. 26, 974–997 (2014)

    Article  MathSciNet  Google Scholar 

  23. Wang, X., Song, T., Gong, F., Zheng, P.: On the computational power of spiking neural P systems with self-organization. Sci. Rep. 6, 27624 (2016)

    Article  Google Scholar 

  24. Chen, H., Freund, R., Ionescu, M.: On string languages generated by spiking neural P systems. Fund. Inform. 75, 141–162 (2007)

    MATH  MathSciNet  Google Scholar 

  25. Krithivasan, K., Metta, V.P., Garg, D.: On string languages generated by spiking neural P systems with anti-spikes. Int. J. Found. Comput. Sci. 22, 15–27 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zeng, X., Xu, L., Liu, X.: On string languages generated by spiking neural P systems with weights. Inform. Sci. 278, 423–433 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Song, T., Xu, J., Pan, L.: On the universality and non-universality of spiking neural P systems with rules on synapses. IEEE Trans. Nanobiosci. 14, 960–966 (2015)

    Article  Google Scholar 

  28. Wu, T., Zhang, Z., Pan, L.: On languages generated by cell-like spiking neural P systems. IEEE Trans. Nanobiosci. 15, 455–467 (2016)

    Article  Google Scholar 

  29. Păun, G., Păun, A.: Small universal spiking neural P systems. Biosystems 90, 48–60 (2007)

    Article  MATH  Google Scholar 

  30. Zhang, X., Zeng, X., Pan, L.: Smaller universal spiking neural P systems. Fund. Inform. 87, 117–136 (2008)

    MATH  MathSciNet  Google Scholar 

  31. Pan, L., Zeng, X.: A note on small universal spiking neural P systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 436–447. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11467-0_29

    Chapter  Google Scholar 

  32. Song, T., Jiang, Y., Shi, X., Zeng, X.: Small universal spiking neural P systems with anti-spikes. J. Comput. Theor. Nanosci. 10, 999–1006 (2013)

    Article  Google Scholar 

  33. Zeng, X., Pan, L., Pérez-Jiménez, M.J.: Small universal simple spiking neural P systems with weights. Sci. China. Inform. Sci. 57, 1–11 (2014)

    MathSciNet  Google Scholar 

  34. Metta, V.P., Raghuraman, S., Krithivasan, K.: Small universal spiking neural P systems with cooperating rules as function computing devices. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 300–313. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14370-5_19

    Google Scholar 

  35. Song, T., Pan, L.: A small universal spiking neural P systems with cooperating rules. Rom. J. Inf. Sci. Technol. 17, 177–189 (2014)

    Google Scholar 

  36. Ishdorj, T.-O., Leporati, A., Pan, L., Zeng, X., Zhang, X.: Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theor. Comput. Sci. 411, 2345–2358 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron division and budding. Sci. China Inform. Sci. 54, 1596–1607 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Song, T., Zheng, P., Wong, M.L., Wang, X.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inform. Sci. 372, 380–391 (2016)

    Article  Google Scholar 

  39. Díaz-Pernil, D., Gutiérrez-Naranjo, M.J.: Semantics of deductive databases with spiking neural P systems. Neurocomputing (2017). https://doi.org/10.1016/j.neucom.2017.07.007

  40. Zeng, X., Song, T., Zhang, X., Pan, L.: Performing four basic arithmetic operations with spiking neural P systems. IEEE Trans. Nanobiosci. 11, 366–374 (2012)

    Article  Google Scholar 

  41. Liu, X., Li, Z., Liu, J., Liu, L., Zeng, X.: Implementation of arithmetic operations with time-free spiking neural P systems. IEEE Trans. Nanobiosci. 14, 617–624 (2015)

    Article  Google Scholar 

  42. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M.J., Wang, T.: Weighted fuzzy spiking neural P systems. IEEE Trans. Fuzzy Syst. 21, 209–220 (2013)

    Article  Google Scholar 

  43. Peng, H., Wang, J., Pérez-Jiménez, M.J., Wang, H., Shao, J., Wang, T.: Fuzzy reasoning spiking neural P systems for fault diagnosis. Inform. Sci. 235, 106–116 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wang, J., Peng, H.: Adaptive fuzzy spiking neural P systems for fuzzy inference and learning. Int. J. Comput. Math. 90, 857–868 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., Pérez-Jiménez, M.J.: Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Trans. Power Syst. 30, 1182–1194 (2015)

    Article  Google Scholar 

  46. Zhang, G., Rong, H., Neri, F., Pérez-Jiménez, M.J.: An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int. J. Neur. Syst. 24, 1440006 (2014)

    Article  Google Scholar 

  47. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems with exhaustive use of rules. Int. J. Unconv. Comput. 3, 135–154 (2007)

    Google Scholar 

  48. Ciobanu, G., Pan, L., Păun, G., Pérez-Jiménez, M.J.: P systems with minimal parallelism. Theor. Comput. Sci. 378, 117–130 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  49. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Language: Volume 3 Beyond Words. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6

    Google Scholar 

  50. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, New York (2010)

    MATH  Google Scholar 

  51. Minsky, M.: Computation - Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (61502063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Y., Luo, F., Luo, Y. (2017). Spiking Neural P Systems with Minimal Parallelism. In: He, C., Mo, H., Pan, L., Zhao, Y. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2017. Communications in Computer and Information Science, vol 791. Springer, Singapore. https://doi.org/10.1007/978-981-10-7179-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7179-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7178-2

  • Online ISBN: 978-981-10-7179-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics