Abstract
The performance of genetic algorithm (GA) critically depends on the rates of variation operation. In this paper, we propose a hybrid parameter adaptation scheme, which integrates the traditional adaptive and self-adaptive method, to dynamically control the crossover and mutation rate of GA during evolution. Such a scheme can take advantage of both adaptive and self-adaptive mechanisms, thus effectively setting the parameters of GA. The resulting GA has been applied for data clustering. Our results show that the proposed scheme is beneficial and the resulting GA outperforms the adaptive GA or self-adaptive GA for data clustering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press, Cambridge (1992)
Burke, E.K., Kendall, G., et al.: Search Methodologies. Springer, Heidelberg (2005)
Pabico, J.P., Albacea, E.A.: The interactive effects of operators and parameters to GA performance under different problem sizes. arXiv preprint arXiv:1508.00097 (2015)
Eiben, A.E., Smith, J.E., et al.: Introduction to Evolutionary Computing, vol. 53. Springer, Heidelberg (2003)
Mills, K., Filliben, J.J., Haines, A.: Determining relative importance and effective settings for genetic algorithm control parameters. Evol. Comput. 23(2), 309–342 (2015)
Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)
Bäck, T., Eiben, A.E., van der Vaart, N.A.L.: An emperical study on GAs “Without Parameters”. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 315–324. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_31
Bäck, T.: Self-adaptation in genetic algorithms. In: Proceedings of The First European Conference on Artificial Life, pp. 263–271. MIT Press, Cambridge (1992)
Hinterding, R.: Gaussian mutation and self-adaption for numeric genetic algorithms. In: IEEE International Conference on Evolutionary Computation, vol. 1, p. 384. IEEE (1995)
Glickman, M.R., Sycara, K.: Reasons for premature convergence of self-adapting mutation rates. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 62–69. IEEE (2000)
Fogarty, T.C.: Varying the probability of mutation in the genetic algorithm. In: Proceedings of the Third International Conference on Genetic Algorithms, pp. 104–109. Morgan Kaufmann Publishers Inc., San Francisco (1989)
Bäck, T., Schütz, M.: Intelligent mutation rate control in canonical genetic algorithms. In: Raś, Z.W., Michalewicz, M. (eds.) ISMIS 1996. LNCS, vol. 1079, pp. 158–167. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61286-6_141
Smith, J.E., Fogarty, T.C.: Adaptively parameterised evolutionary systems: self adaptive recombination and mutation in a genetic algorithm. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 441–450. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61723-X_1008
Kruisselbrink, J.W., Li, R., Reehuis, E., Eggermont, J., Bäck, T.: On the log-normal self-adaptation of the mutation rate in binary search spaces. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 893–900. ACM (2011)
van Rijn, S., Emmerich, M., Reehuis, E., Bäck, T.: Optimizing highly constrained truck loadings using a self-adaptive genetic algorithm. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 227–234. IEEE (2015)
Kivijärvi, J., Fränti, P., Nevalainen, O.: Self-adaptive genetic algorithm for clustering. J. Heuristics 9(2), 113–129 (2003)
Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. B 24(4), 656–667 (1994)
Zhu, K.Q.: A diversity-controlling adaptive genetic algorithm for the vehicle routing problem with time windows. In: Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, pp. 176–183. IEEE (2003)
Mc Ginley, B., Maher, J., O’Riordan, C., Morgan, F.: Maintaining healthy population diversity using adaptive crossover, mutation, and selection. IEEE Trans. Evol. Comput. 15(5), 692–714 (2011)
Thierens, D.: Adaptive mutation rate control schemes in genetic algorithms. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 1, pp. 980–985. IEEE (2002)
Liu, Z., Zhou, J., Lai, S.: New adaptive genetic algorithm based on ranking. In: 2003 International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1841–1844. IEEE (2003)
Deb, K.: An introduction to genetic algorithms. Sadhana 24, 293–315 (1999)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)
Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., et al.: A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2(1), 65–73 (1998)
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant No. 61573316).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ye, K., Sheng, W. (2017). A Hybrid Parameter Adaptation Based GA and Its Application for Data Clustering. In: He, C., Mo, H., Pan, L., Zhao, Y. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2017. Communications in Computer and Information Science, vol 791. Springer, Singapore. https://doi.org/10.1007/978-981-10-7179-9_12
Download citation
DOI: https://doi.org/10.1007/978-981-10-7179-9_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-7178-2
Online ISBN: 978-981-10-7179-9
eBook Packages: Computer ScienceComputer Science (R0)