Skip to main content

The Design of RNA Biosensors Based on Nano-Gold and Magnetic Nanoparticles

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 791))

  • 1128 Accesses

Abstract

With the application of biosensors in environmental monitoring, these features of low sample concentrations and the need for real-time monitoring feedback in environmental monitoring, make the sensor requirements also increasing. High sensitivity, short response time and low cost are the environmental monitoring biological sensors goal. RNA has a high affinity capacity and sensitivity, and has better thermal stability after hybridization. Combined with the characteristics of nano-gold and magnetic particles in this paper, improving material and probe of electrode, propose design ideas of several biosensors with LNA, PNA for RNA viruses in water monitoring to improve biosensors in environmental monitoring of practicality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark, L.C., Lyons, C.: Electrode systems for continuous monitoring in cardiovascular surgery. Ann. Ny. Acad. Sci. 102, 29–45 (1962)

    Article  Google Scholar 

  2. Zhou, Y., Zhang, Y., Pan, F.: A competitive immunochromatographic assay based on a novel probe for the detection of Mercury (II) ions in water samples. Biosens. Bioelectro. 25(11), 2534–2538 (2010)

    Article  Google Scholar 

  3. Ghosh, S., Priyam, A., Bhattacharya, S.C.: Mechanistic aspects of quantum dot based probing of Cu (II) ions: role of dendrimer in sensor efficiency. J. Fluorescence. 19(4), 723–731 (2009)

    Article  Google Scholar 

  4. Swearingen, C.B., Wernette, D.P., Cropek, D.M., Lu, Y., Sweedler, J.V., Bohn, P.W.: Immobilization of a catalytic DNA molecular beacon on Au for Pb(II) detection. Anal. Chem. 77(2), 442–448 (2005)

    Article  Google Scholar 

  5. Yoshitsugu, A., Qian, M., Erin, E., Andrei, L., Hecht, S.M.: Identification of strong DNA binding motifs for bleomycin. J. Am. Chem. Soc. 130(30), 9650 (2008)

    Article  Google Scholar 

  6. Raz, S.R., Bremer, M.G.E.G., Giesbers, M., Norde, W.: Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance. Biosens. Bioelectro. 24(4), 552–557 (2008)

    Article  Google Scholar 

  7. Soh, N., Ueda, T.: Perylene bisimide as a versatile fluorescent tool for environmental and biological analysis: a review. Talanta 85(3), 1233–1237 (2011)

    Article  Google Scholar 

  8. Sassolas, A., Blum, L.J., Lecabouvier, B.D.: Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30(3), 489–511 (2012)

    Article  Google Scholar 

  9. Ceylan, K.H., Klah, H., Ozgen, C., Alp, A., Hascelik, G.: Mems biosensors for detection of methicillin resistant staphylococcus aureus. Biosens. Bioelectro. 29(1), 1–12 (2011)

    Article  Google Scholar 

  10. Chobtang, J., Boer, I.J.M.D., Hoogenboom, R.L.A.P., Haasnoot, W., Kijlstra, A., Meerburg, B.G.: The need and potential of biosensors to detect dioxins and dioxin-like polychlorinated biphenyls along the milk eggs and meat food chain. Sensors 11(12), 11692–11716 (2011)

    Article  Google Scholar 

  11. Dantham, V.R., Holler, S., Kolchenko, V., Wan, Z., Arnold, S.: Taking whispering gallery-mode single virus detection and sizing to the limit. Appl. Phys. Lett. 101(4), 1379 (2012)

    Article  Google Scholar 

  12. Grabar, K.C., Allison, K.J., Baker, B.E., Bright, R.M., Brown, K.R., Freeman, R.G., et al.: Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal surfaces. Langmuir 12(10), 2353–2361 (1996)

    Article  Google Scholar 

  13. Baker, B.E., Kline, N.J., Treado, P.J., Natan, M.J.: Solution-based assembly of metal surfaces by combinatorial methods. J. Am. Chem. Soc. 118(36), 8721–8722 (1996)

    Article  Google Scholar 

  14. Koshkin, A.A., Singh, S.K., Nielsen, P., Rajwanshi, V.K., Kumar, R., Meldgaard, M.: LNA (Locked Nucleic Acids): Synthesis of the Adenine, Cytosine, Guanine, 5-Methylcytosine, Thymine and Uracil Bicyclonucleoside Monomers, Oligomerisation, and Unprecedented Nucleic AcidrRecognition. Tetrahedron 54(14), 3607–3630 (1998)

    Article  Google Scholar 

  15. Freeman, R.G., Grabar, K.C., Allison, K.J., Bright, R.M., Davis, J.A., Guthrie, A.P.: Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267(5204), 1629–1632 (1995)

    Article  Google Scholar 

  16. Lyon, L.A., Musick, M.D., Smith, P.C., Reiss, B.D., Pena, D.J., Natan, M.J.: Surface plasmon resonance of colloidal Au-modified gold films. Sensor. Actuat. B-Chem. 54(1C2), 118–124 (1999)

    Article  Google Scholar 

  17. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592), 607–609 (1996)

    Article  Google Scholar 

  18. Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L., Mirkin, C.A.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329), 1078–1081 (1997)

    Article  Google Scholar 

  19. Storhoff, J.J., Elghanian, R., Mucic, R.C., And, C.A.M., Letsinger, R.L.: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120(9), 1959–1964 (1998)

    Article  Google Scholar 

  20. Dykman, L.A., Lyakhov, A.A., Bogatyrev, V.A.: Synthesis of colloidal gold using high-molecular-weight reducing agents. Colloid J. Russ. Acad. Sci. 60, 700–704 (1998)

    Google Scholar 

  21. Zhu, C., Yang, G., Li, H., Du, D., Lin, Y.: Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 87(1), 230 (2015)

    Article  Google Scholar 

  22. Shi, H., Zhang, L., Cai, W.: Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica. Mater. Res. Bull. 35(10), 1689–1695 (2000)

    Article  Google Scholar 

  23. Dai, X., Tan, Y., Xu, J.: Formation of Gold nanoparticles in the presence of O-Anisidine and the dependence of the structure of Poly (O-Anisidine) on synthetic conditions. Langmuir 18(23), 9010–9016 (2002)

    Article  Google Scholar 

  24. Lan, X., Jin, Z., Zhao, X., Gou, L.: Preparation of nanogold colloid by chemical reducing with PVP protection. Rare Metal Mat. Eng. 32(1), 50–53 (2003)

    Google Scholar 

  25. Chen, W.X., Wu, W., Chen, H.X.: Preparation and Characterization of nano-colloidal precious metals Fibroin Fibrinogen bit reduction. Sci. China Series B. 33(3), 185–191 (2003)

    Google Scholar 

  26. Wong, Y.T., Manimaran, M., Tay, F.E.: Synthesis and characterisation of alkanethiolated nanogold clusters for BioMEMS applications. Int. J. Comput. Eng. Sci. 4(3), 663–666 (2003)

    Article  Google Scholar 

  27. Lee, K.M., Park, S.T., Lee, D.J.: Nanogold synthesis by inert gas condensation for immuno-chemistry probes. J. Alloy. Compd. 390(1C2), 297–300 (2005)

    Article  Google Scholar 

  28. Mandal, S., Phadtare, S., Sastry, M.: Interfacing biology with nanoparticles. Curr. Appl. Phys. 5(2), 118–127 (2005)

    Article  Google Scholar 

  29. Lu, N., Gao, A., Zhou, H., Wang, Y., Yang, X., Wang, Y.: Nterfacing biology with nanoparticles. Chin. J. Chem. 34(3), 308C–316 (2016)

    Article  Google Scholar 

  30. Nuber, S., Zabel, U., Lorenz, K., Nuber, A., Milligan, G., Tobin, A.B.: \({\upbeta }\)-arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531(7596), 661–684 (2016)

    Article  Google Scholar 

  31. Safark, I., Safarkov, M.: Magnetic nanoparticles and biosciences. Monatsh. Chem. 133, 737–759 (2002)

    Article  Google Scholar 

  32. Weissleder, R., Bogdanov, A., Neuwelt, E.A., Papisov, M.: Long-circulating iron oxides for MR imaging. Adv. Drug. Deliver. Rev. 16(2C3), 321–334 (1995)

    Article  Google Scholar 

  33. Jordan, A., Scholz, R., Wust, P., Fahling, H., Felix, R.: Magnetic Fluid Hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201(1C3), 413–419 (1999)

    Article  Google Scholar 

  34. Nam, J.M., And, S.I.S., Mirkin, C.A.: Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc. 126(19), 5932–5933 (2004)

    Article  Google Scholar 

  35. Nam, J.M., Thaxton, C.S., Mirkin, C.A.: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641), 1884–1886 (2003)

    Article  Google Scholar 

  36. Zhen, L., Qiao, S., Gao, M.: Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to F\(e_{3}O_{4}\). Angew. Chem. 44(1), 123–126 (2004)

    Google Scholar 

  37. Koshkin, A.A., Singh, S.K., Nielsen, P., Rajwanshi, V.K., Kumar, R., Meldgaard, M.: LDA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54(14), 3607–3630 (1998)

    Article  Google Scholar 

  38. Singh, R.P., Oh, B.K., Choi, J.W.: Application of peptide nucleic acid towards development of nanobiosensor arrays. Bioelectrochemistry 79(2), 153–161 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China (No. 61702008, No. 61672001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-xiang Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Yin, Zx., Cui, Jz. (2017). The Design of RNA Biosensors Based on Nano-Gold and Magnetic Nanoparticles. In: He, C., Mo, H., Pan, L., Zhao, Y. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2017. Communications in Computer and Information Science, vol 791. Springer, Singapore. https://doi.org/10.1007/978-981-10-7179-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7179-9_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7178-2

  • Online ISBN: 978-981-10-7179-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics