Skip to main content

An Image Dataset of Bishnupur Terracotta Temples for Digital Heritage Research

  • Chapter
  • First Online:
Heritage Preservation

Abstract

Heritage preservation and awareness building has become a major application domain for computer vision techniques in recent days. Bishnupur is an important and well-known heritage site in West Bengal, India. This attractive tourist place is famous for its terracotta temples. In this article, we present an image dataset created by us for developing and evaluating various computer vision algorithms for preservation and visualization of heritage artifacts in digital space. The dataset includes images of some important temples, such as Jor Bangla temple, Kalachand temple, Madan Mohan temple, Nandalal temple, Radha Madhav temple, Rasmancha, and Shyamrai temple. Though this dataset can be used for many types of computer vision and image analysis algorithms, we have shown here its usefulness by testing the images for four different applications: 3D reconstruction, image inpainting, texture classification, and content-specific figure spotting and retrieval. Note that we have shown the results of baseline methods only. The dataset is publicly available at http://www.isical.ac.in/~bsnpr/ for research purpose only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.image-net.org/

  2. 2.

    http://yfcc100m.appspot.com/

  3. 3.

    http://ccwu.me/vsfm/doc.html.

  4. 4.

    The image is copied from http://ccwu.me/vsfm/.

  5. 5.

    https://github.com/snavely/bundler_sfm.

  6. 6.

    http://www.di.ens.fr/pmvs/.

References

  1. http://whc.unesco.org/en/tentativelists/1087/

  2. http://www.bankura.gov.in/Gazet/Chapter_2.PDF

  3. http://www.asikolkata.in/bankura.aspx

  4. http://www.isical.ac.in/~bsnpr/

  5. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patch-match: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 1–11 (2009)

    Article  Google Scholar 

  6. Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: ICCV (2005)

    Google Scholar 

  7. Chatterjee, A., Madhav Govindu, V.: Efficient and robust large-scale rotation averaging. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 521–528 (2013)

    Google Scholar 

  8. Cohen, A., Zach, C., Sinha, S.N., Pollefeys, M.: Discovering and exploiting 3D symmetries in structure from motion. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1514–1521. IEEE (2012)

    Google Scholar 

  9. Costa, A.F., Mamani, G.H., Traina, A.J.M.: An efficient algorithm for fractal analysis of textures. In: SIBGRAPI (2012)

    Google Scholar 

  10. Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-based inpainting. IEEE TIP 13(9) (2004)

    Google Scholar 

  11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  12. Darabi, S., Shechtman, E., Barnes, C., Goldman, D.B., Sen, P.: Image melding: combining inconsistent images using patch-based synthesis. ACM Trans. Graph. (TOG), 31(4), 82:1–82:10 (2012)

    Article  Google Scholar 

  13. Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: ICCV, vol. 2, pp. 1033–1038 (1999)

    Google Scholar 

  14. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. IEEE TPAMI 32(8), 1362–1376 (2010)

    Article  Google Scholar 

  15. Ghorai, M., Mandal, S., Chanda, B.: Image completion assisted by transformation domain patch approximation. In: Proceedings of the 2014 Indian Conference on Computer Vision Graphics and Image Processing, p. 66. ACM (2014)

    Google Scholar 

  16. Giakoumis, I., Nikolaidis, N., Pitas, I.: Digital image processing techniques for the detection and removal of cracks in digitized paintings. IEEE Trans. Image Process. 15(1), 178–188 (2006)

    Article  Google Scholar 

  17. Giakoumis, I., Pitas, I.: Digital restoration of painting cracks. In: Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998. ISCAS’98, vol. 4, pp. 269–272. IEEE (1998)

    Google Scholar 

  18. Halder, S., Halder, M.: Temple Architecture of Bengal: Analysis of Stylistic Evolution from Fifth to Nineteenth Century. Urbee Prakashan, Kolkata (2011)

    Google Scholar 

  19. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural feature for image classification. IEEE TSMC 3(6), 610–621 (1973)

    Google Scholar 

  20. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge university press (2003)

    Google Scholar 

  21. Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the significance of real-world conditions for material classification. In: ECCV (2004)

    Google Scholar 

  22. Heinly, J., Schonberger, J.L., Dunn, E., Frahm, J.-M.: Reconstructing the world* in six days*(as captured by the Yahoo 100 million image dataset). In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3287–3295 (2015)

    Google Scholar 

  23. Kim, T.K., Wong, S.F., Cipolla, R.: Tensor canonical correlation analysis for action classification. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2007

    Google Scholar 

  24. Komodakis, N., Tziritas, G.: Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE TIP 16(11) (2007)

    Article  MathSciNet  Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  27. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., et al.: The digital Michelangelo project: 3D scanning of large statues. In: CGIT, pp. 131–144 (2000)

    Google Scholar 

  28. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  29. Maji, S., Cimpoi, M., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: CVPR (2014)

    Google Scholar 

  30. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. (IJCV) 42(3), 145–175 (2001)

    Article  Google Scholar 

  31. Perronnin, F., Sanchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: ECCV (2010)

    Chapter  Google Scholar 

  32. Purkait, P., Chanda, B.: Digital restoration of damaged mural images. In: ICVGIP (2012)

    Google Scholar 

  33. Remondino, F.: Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens. 3(6), 1104–1138 (2011)

    Article  Google Scholar 

  34. Ruzic, T., Pizurica, A.: Context-aware patch-based image inpainting using Markov random field modeling. IEEE Trans. Image Process. 24(1), 444–456 (2015)

    Article  MathSciNet  Google Scholar 

  35. Sahay, P., Rajagopalan, A.: Geometric inpainting of 3D structures. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–7 (2015)

    Google Scholar 

  36. Seo, H.J., Milanfar, P.: Training-free, generic object detection using locally adaptive regression kernels. IEEE Trans. PAMI 32(9), 1688–1704 (2010)

    Article  Google Scholar 

  37. Sharan, L., Liu, C., Rosenholtz, R., Adelson, E.H.: Recognizing materials using perceptually inspired features. IJCV 103(3), 348–371 (2013)

    Article  MathSciNet  Google Scholar 

  38. Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2007

    Google Scholar 

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  40. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: ACM TOG, vol. 25, pp. 835–846. ACM (2006)

    Article  Google Scholar 

  41. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. IJCV 80(2), 189–210 (2008)

    Article  Google Scholar 

  42. Stanco, F., Tenze, L., Ramponi, G.: Virtual restoration of vintage photographic prints affected by foxing and water blotches. J. Electron. Imaging 14(4), 043008–043008 (2005)

    Article  Google Scholar 

  43. Stanco, F., Tenze, L., Ramponi, G.: Technique to correct yellowing and foxing in antique books. IET Image Process. 1(2), 123–133 (2007)

    Article  Google Scholar 

  44. Wexler, Y., Shechtman, E., Irani, M.: Space-time completion of video. IEEE TPAMI 29(3), 463–476 (2007)

    Article  Google Scholar 

  45. Wilson, K., Snavely, N.: Robust global translations with 1DSfM. In: European Conference on Computer Vision, pp. 61–75. Springer (2014)

    Google Scholar 

  46. Wu, C.: VisualSFM: A visual structure from motion system. http://ccwu.me/vsfm/ (2011)

  47. Wu, C.: Towards linear-time incremental structure from motion. In: 3DV (2013)

    Google Scholar 

  48. Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of parts. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2878–2890 (2013)

    Article  Google Scholar 

  49. Zhang, Z.: A flexible new technique for camera calibration. IEEE TPAMI 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinmoy Ghorai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghorai, M., Santra, S., Samanta, S., Purkait, P., Chanda, B. (2018). An Image Dataset of Bishnupur Terracotta Temples for Digital Heritage Research. In: Chanda, B., Chaudhuri, S., Chaudhury, S. (eds) Heritage Preservation. Springer, Singapore. https://doi.org/10.1007/978-981-10-7221-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7221-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7220-8

  • Online ISBN: 978-981-10-7221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics