Skip to main content

Restoration of Digital Images of Old Degraded Cave Paintings via Patch Size Adaptive Source-Constrained Inpainting

  • Chapter
  • First Online:
Heritage Preservation

Abstract

Restoration of cave paintings is the process of improving visual quality of degraded images. Source-constrained exemplar-based inpainting has been used in this work to restore the images of old degraded cave paintings. A modification to the traditional exemplar-based inpaintings, named PAtch Modified exemplar-based InpainTing (PAMIT), has been proposed. Traditional exemplar-based techniques use fixed patch size, which needs to be adjusted for different images. The proposed technique automates this process of adjustment. Results obtained by the proposed technique have been compared with various other inpainting techniques applied under the same source-constrained framework. The restored images by the proposed technique have been found to be visually better than those obtained by other exemplar-based techniques. In this regard, an objective measure of the BRISQUE score has been used to demonstrate the effectiveness of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A software release of the technique reported in [33] is available online: http://live.ece.utexas.edu/research/quality/BRISQUE_release.zip.

References

  1. Abe, S.: Support Vector Machines for Pattern Classification, vol. 2. Springer (2005)

    Google Scholar 

  2. Arias, P., Caselles, V., Sapiro, G.: A variational framework for non-local image inpainting. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 345–358. Springer (2009)

    Google Scholar 

  3. Aswatha, S.M., Mukherjee, J., Bhowmick, P.: An integrated repainting system for digital restoration of Vijayanagara murals. Int. J. Image Graph. 16(01), 1650005 (2016)

    Article  MathSciNet  Google Scholar 

  4. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001)

    Article  MathSciNet  Google Scholar 

  5. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  6. Bornemann, F., März, T.: Fast image inpainting based on coherence transport. J. Math. Imaging Vis. 28(3), 259–278 (2007)

    Article  MathSciNet  Google Scholar 

  7. Brandão, T.: No-reference image quality assessment based on DCT domain statistics. Signal Process. 88(4), 822–833 (2008)

    Article  Google Scholar 

  8. Buchsbaum, G., Gottschalk, A.: Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proc. R. Soc. Lond. B: Biol. Sci. 220(1218), 89–113 (1983)

    Article  Google Scholar 

  9. Buyssens, P., Daisy, M., Tschumperlé, D., Lézoray, O.: Exemplar-based inpainting: technical review and new heuristics for better geometric reconstructions. IEEE Trans. Image Process. 24(6), 1809–1824 (2015)

    MathSciNet  Google Scholar 

  10. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Chan, T., Shen, J.: Mathematical models for local deterministic in-paintings. UCLA CAM TR 00–11 (2000)

    Google Scholar 

  12. Chan, T.F., Shen, J.: Nontexture inpainting by curvature-driven diffusions. J. Vis. Commun. Image Represent. 12(4), 436–449 (2001)

    Article  Google Scholar 

  13. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Article  Google Scholar 

  14. De Bonet, J.S.: Multiresolution sampling procedure for analysis and synthesis of texture images. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 361–368. ACM Press/Addison-Wesley Publishing Co. (1997)

    Google Scholar 

  15. Demanet, L., Song, B., Chan, T.: Image inpainting by correspondence maps: a deterministic approach. Appl. Comput. Math. 1100(217–50), 99 (2003)

    Google Scholar 

  16. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 1033–1038. IEEE (1999)

    Google Scholar 

  17. Ferzli, R., Karam, L.J.: A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans. Image Process. 18(4), 717–728 (2009)

    Article  MathSciNet  Google Scholar 

  18. Ghorai, M., Chanda, B.: An image inpainting algorithm using higher order singular value decomposition. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 2867–2872. IEEE (2014)

    Google Scholar 

  19. Ghorai, M., Chanda, B.: An image inpainting method using plsa-based search space estimation. Mach. Vis. Appl. 26(1), 69–87 (2015)

    Article  Google Scholar 

  20. Huang, W., Wang, S.W., Yang, X.P., Jia, J.F.: Dunhuang murals in-painting based on image decomposition. Shandong Daxue Xuebao (GongxueBan), 40(2), 24–27 (2010)

    Google Scholar 

  21. Jun, J., Wang, Z.: The research of Tibet mural digital images inpainting using CDD model. In: 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), 2013, pp. 805–807. IEEE (2013)

    Google Scholar 

  22. Kawanaka, H., Kosaka, S., Iwahori, Y., Sugiyama, S.: Image reproduction based on texture image extension with traced drawing for heavy damaged mural painting. Procedia Comput. Sci. 22, 968–975 (2013)

    Article  Google Scholar 

  23. Komodakis, N., Tziritas, G.: Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE Trans. Image Process. 16(11), 2649–2661 (2007)

    Article  MathSciNet  Google Scholar 

  24. Kumar, V., Mukherjee, J., Das Mandal, S.K.: Combinatorial exemplar based image inpainting. In: Proceedings of International Workshop on Combinatorial Image Analysis, pp. 284–298. Springer (2015)

    Google Scholar 

  25. Kumar, V., Mukherjee, J., Das Mandal, S.K.: Image inpainting through metric labelling via guided patch mixing. IEEE Trans. Image Process. (2015)

    Google Scholar 

  26. Kumar, V., Mukhopadhyay, J., Das Mandal, S.K.: Modified exemplar-based image inpainting via primal-dual optimization. In: Proceedings of Pattern Recognition and Machine Intelligence. PReMI 2015, Warsaw, Poland, 30 June–3 July 2015, Proceedings, vol. 9124, pp. 116–125. Springer (2015)

    Google Scholar 

  27. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts. In: ACM Transactions on Graphics (ToG), ACM, 2003, vol. 22, pp. 277–286

    Article  Google Scholar 

  28. Le Meur, O., Ebdelli, M., Guillemot, C.: Hierarchical super-resolution-based inpainting. IEEE Trans. Image Process. 22(10), 3779–3790 (2013)

    Article  MathSciNet  Google Scholar 

  29. Li, Q., Wang, Z.: Reduced-reference image quality assessment using divisive normalization-based image representation. IEEE J. Sel. Top. Signal Process. 3(2), 202–211 (2009)

    Article  Google Scholar 

  30. Lin, W., Jay Kuo, C.-C.: Perceptual visual quality metrics: a survey. J. Vis. Commun. Image Represent. 22(4), 297–312 (2011)

    Article  Google Scholar 

  31. Liu, Y., Caselles, V.: Exemplar-based image inpainting using multiscale graph cuts. IEEE Trans. Image Process. 22(5), 1699–1711 (2013)

    Google Scholar 

  32. Masnou, S.: Disocclusion: a variational approach using level lines. IEEE Trans. Image Process. 11(2), 68–76 (2002)

    Article  MathSciNet  Google Scholar 

  33. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  34. Purkait, P., Chanda, B.: Digital restoration of damaged mural images. In: Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing, p. 49. ACM (2012)

    Google Scholar 

  35. Rehman, A., Wang, Z.: Reduced-reference image quality assessment by structural similarity estimation. IEEE Trans. Image Process. 21(8), 3378–3389 (2012)

    Article  MathSciNet  Google Scholar 

  36. Ruderman, D.L.: The statistics of natural images. Network: Comput. Neural Syst. 5(4), 517–548 (1994)

    Article  Google Scholar 

  37. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  38. Sheikh, H.R., Bovik, A.C., Cormack, L.: No-reference quality assessment using natural scene statistics: JPEG2000. IEEE Trans. Image Process. 14(11), 1918–1927 (2005)

    Article  Google Scholar 

  39. Sheikh, H.R., Bovik, A.C.: Information theoretic approaches to image quality assessment. In: Handbook of Image and Video Processing. Elsevier (2005)

    Chapter  Google Scholar 

  40. Shen, J., Kang, S.H., Chan, T.F.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2003)

    Article  MathSciNet  Google Scholar 

  41. Tschumperlé, D.: Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE’s. Int. J. Comput. Vis. 68(1), 65–82 (2006)

    Article  Google Scholar 

  42. Wang, Z., Bovik, A.C.: Modern Image Quality Assessment. Synthesis Lectures on Image, Video, and Multimedia Processing, vol. 2, no. 1, pp. 1–156 (2006)

    Article  Google Scholar 

  43. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  44. Wang, Z., Simoncelli, E.P.: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. In: Electronic Imaging 2005, pp. 149–159. International Society for Optics and Photonics (2005)

    Google Scholar 

  45. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, 2004, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  46. Wei, L.-Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 479–488. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  47. Winkler, S.: Perceptual Video Quality Metrics—A Review (2005)

    Google Scholar 

  48. Winkler, S., Mohandas, P.: The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans. Broadcast. 54(3), 660–668 (2008)

    Article  Google Scholar 

  49. Qing, W., Yizhou, Y.: Feature matching and deformation for texture synthesis. ACM Trans. Graph. (TOG) 23(3), 364–367 (2004)

    Article  Google Scholar 

  50. Zhang, S., Zhou, X.: An improved scheme for Criminisi’s inpainting algorithm. In: 2011 4th International Congress on Image and Signal Processing (CISP), vol. 4, pp. 2048–2051. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veepin Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Mukherjee, J., Das Mandal, S.K. (2018). Restoration of Digital Images of Old Degraded Cave Paintings via Patch Size Adaptive Source-Constrained Inpainting. In: Chanda, B., Chaudhuri, S., Chaudhury, S. (eds) Heritage Preservation. Springer, Singapore. https://doi.org/10.1007/978-981-10-7221-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7221-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7220-8

  • Online ISBN: 978-981-10-7221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics