Skip to main content

Cascading-Failure Tolerance for Language Service Networks

  • Chapter
  • First Online:
Services Computing for Language Resources

Part of the book series: Cognitive Technologies ((COGTECH))

  • 434 Accesses

Abstract

One of the main features of The Language Grid is its support for service composition, i.e. creating new language services that meet user requirements by combining the existing ones. Despite the potential of service composition, such a service-oriented computing (SOC) application may experience cascading failure when a disruption on one or more component services is propagated to the composite services that combine them. As the number of language services grows, composite language services will become more common, and thus understanding cascading failure among language services becomes more important. This chapter investigates how failure may propagate among language services and how to improve language service tolerance to cascading failure. To this end, the dependency between language services is modeled as service network on which cascading failure is simulated and analyzed. We also generated service networks in scale-free, exponential, and random topology to analyze how cascading failure occurs in different topology. The simulation reveals that service networks with scale-free topology have better cascading-failure tolerance compares to that of other topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armbrust, M., Fox, O., Griffith, R., Joseph, A.D., Katz, Y., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View of Cloud Computing. Technical Report, University of California at Berkeley (2009)

    Google Scholar 

  2. Ash, J., Newth, D.: Optimizing complex networks for resilience against cascading failure. Phys. A Stat. Mech. Appl. 380, 673–683 (2007)

    Article  Google Scholar 

  3. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A Stat. Mech. Appl. 272(1), 173–187 (1999)

    Article  Google Scholar 

  4. Chen, Q., Shi, D.: The modeling of scale-free networks. Phys. A Stat. Mech. Appl. 335(1), 240–248 (2004)

    Article  MathSciNet  Google Scholar 

  5. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69(4), 045104 (2004)

    Article  Google Scholar 

  6. Dorogovtsev, S.N., Mendes, J.F.: Evolution of networks. Adv. Phys. 51(4), 1079–1187 (2002)

    Article  Google Scholar 

  7. Erdős, P., Rényi, A.: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl 5, 17–61 (1960)

    Google Scholar 

  8. Feng, Z., Lan, B., Zhang, Z., Chen, S.: A study of semantic web services network. Comput. J. 58, 1293–1305 (2014)

    Article  Google Scholar 

  9. Huang, K., Fan, Y., Tan, W.: An empirical study of programmable web: a network analysis on a service-mashup system. In: 2012 IEEE 19th International Conference on Web Services (ICWS), pp. 552–559 (2012)

    Google Scholar 

  10. Ishida, T. (ed.): The Language Grid: Service-Oriented Collective Intelligence for Language Resource Interoperability. Springer Science & Business Media (2011)

    Google Scholar 

  11. Ishida, T., Murakami, Y., Lin, D., Nakaguchi, T., Otani, M.: Open Language Grid: towards a global language service infrastructure. In: The Third ASE International Conference on Social Informatics (SocialInformatics 2014), Cambridge, Massachusetts, USA (2014)

    Google Scholar 

  12. Kil, H., Oh, S.C., Elmacioglu, E., Nam, W., Lee, D.: Graph theoretic topological analysis of web service networks. World Wide Web 12(3), 321–343 (2009)

    Article  Google Scholar 

  13. Kinney, R., Crucitti, P., Albert, R., Latora, V.: Modeling cascading failures in the North American power grid. Eur. Phys. J. B Condens. Matter Complex Syst. 46(1), 101–107 (2005)

    Article  Google Scholar 

  14. Lhaksmana, K.M., Murakami, Y., Ishida, T.: Cascading failure tolerance in large-scale service networks. In: 2015 IEEE International Conference on Services Computing (SCC), pp. 1–8 (2015)

    Google Scholar 

  15. Lhaksmana, K.M., Murakami, Y., Ishida, T.: Analysis of large-scale service network tolerance to cascading failure. IEEE Internet Things J. 3(6), 1159–1170 (2016)

    Article  Google Scholar 

  16. Little, R.G.: Controlling cascading failure: understanding the vulnerabilities of interconnected infrastructures. J. Urban Technol. 9(1), 109–123 (2002)

    Article  Google Scholar 

  17. Murakami, Y., Tanaka, M., Lin, D., Ishida, T.: Service grid federation architecture for heterogeneous domains. In: 2012 IEEE Ninth International Conference on Services Computing (SCC), pp. 539–546 (2012)

    Google Scholar 

  18. Oh, S.C., Lee, D., Kumara, S.R.: Effective web service composition in diverse and large-scale service networks. IEEE Trans. Serv. Comput. 1(1), 15–32 (2008)

    Article  Google Scholar 

  19. Rinaldi, S., Peerenboom, J., Kelly, T.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. 21(6), 11–25 (2001)

    Article  Google Scholar 

  20. Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4(1), 63–79 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Grant-in-Aid for Scientific Research (S) (24220002, 2012–2016) from Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemas M. Lhaksmana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lhaksmana, K.M., Ishida, T., Murakami, Y. (2018). Cascading-Failure Tolerance for Language Service Networks. In: Murakami, Y., Lin, D., Ishida, T. (eds) Services Computing for Language Resources . Cognitive Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-7793-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7793-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7792-0

  • Online ISBN: 978-981-10-7793-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics