Skip to main content

Security Analysis Oriented Physical Components Modeling in Quantum Key Distribution

  • Conference paper
  • First Online:
Mobile Internet Security (MobiSec 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 797))

Included in the following conference series:

  • 380 Accesses

Abstract

Quantum Key Distribution (QKD), based on fundamental principles of quantum mechanics, plays an irreplaceable role in national defense, financial and government affairs. Security analysis of QKD system is of great importance. However, existing studies on modeling QKD system are theory analysis based. In this paper, we propose a Simulation System of Physical Components (SSPC) in QKD system which modeling the three key modules: single photon source, quantum channel and single photon detector, it could generate the simulated key resemble to real QKD physical system and its parameters of the physical components are configurable. Therefore, solution can be deployed in different QKD physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the Conference on Computers, Systems and Signal Processing, Bangalore, India, December 1984 (1984)

    Google Scholar 

  2. Chen, C., Anada, H., et al.: A hybrid encryption scheme with key-cloning protection: user/terminal double authentication via attributes and fingerprints. J. Internet Serv. Inf. Secur. 6(2), 23–36 (2016)

    Google Scholar 

  3. Kurokawa, T., Nojima, R., Moriai, S.: On the security of CBC mode in SSL3.0 and TLS1.0. J. Internet Serv. Inf. Secur. 6(1), 2–19 (2016)

    Google Scholar 

  4. Peng, Y., Wu, C., Zhao, B., Yu, W., Liu, B., Qiao, S.: QKDFlow: QKD based secure communication towards the openflow interface in SDN. In: Yuan, H., Geng, J., Bian, F. (eds.) GRMSE 2016. CCIS, vol. 699, pp. 410–415. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-3969-0_45

    Chapter  Google Scholar 

  5. Elliott, C., Colvin, A., Pearson, D., et al.: Current status of the DARPA quantum network. In: Proceedings of the Defense and Security. International Society for Optics and Photonics (2005)

    Google Scholar 

  6. Peev, M., Pacher, C., Alléaume, R., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11(7), 075001 (2009)

    Article  Google Scholar 

  7. Chen, T.-Y., Liang, H., Liu, Y., et al.: Field test of a practical secure communication network with decoy-state quantum cryptography. Opt. Express 17(8), 6540–6549 (2009)

    Article  Google Scholar 

  8. Chen, T.-Y., Wang, J., Liang, H., et al.: Metropolitan all-pass and inter-city quantum communication network. Opt. Express 18(26), 27217–27225 (2010)

    Article  Google Scholar 

  9. Wang, S., Chen, W., Yin, Z.-Q., et al.: Field test of wavelength-saving quantum key distribution network. Opt. Lett. 35(14), 2454–2456 (2010)

    Article  Google Scholar 

  10. Sasaki, M., Fujiwara, M., Ishizuka, H., et al.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387–10409 (2011)

    Article  Google Scholar 

  11. Stucki, D., Legre, M., Buntschu, F., et al.: Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 13(12), 123001 (2011)

    Article  Google Scholar 

  12. Fröhlich, B., Dynes, J.F., Lucamarini, M., et al.: A quantum access network. Nature 501(7465), 69–72 (2013)

    Article  Google Scholar 

  13. Zhao, B., Liu, B., Wu, C., et al.: A novel NTT-based authentication scheme for 10-GHz quantum key distribution systems. IEEE Trans. Ind. Electron. 63(8), 5101–5108 (2016)

    MathSciNet  Google Scholar 

  14. Liu, B., Zhao, B., Wei, Z., et al.: Qphone: a quantum security VoIP phone. In: Proceedings of the ACM SIGCOMM Computer Communication Review. ACM (2013)

    Google Scholar 

  15. Djellab, R., Benmohammed, M.: Securing encryption key distribution in WLAN via QKD. In: 2012 International Conference on Proceedings of the Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). IEEE (2012)

    Google Scholar 

  16. Toyoshima, M., Schaefer, C., Shoji, Y., et al.: Mobile quantum cryptography enhances secure communications

    Google Scholar 

  17. Marhoefer, M., Wimberger, I., Poppe, A.: Applicability of quantum cryptography for securing Mobile communication networks (2009)

    Google Scholar 

  18. Cui, K., Wang, J., Zhang, H.-F., et al.: A real-time design based on FPGA for expeditious error reconciliation in QKD system. Inf. Forensics Secur. IEEE Trans. 8(1), 184–190 (2013)

    Article  Google Scholar 

  19. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bennett, C.H., Bessette, F., Brassard, G., et al.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)

    Article  MATH  Google Scholar 

  21. Brassard, G., Salvail, L.: Secret-Key reconciliation by public discussion. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 410–423. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_35

    Chapter  Google Scholar 

  22. Buttler, W., Lamoreaux, S., Torgerson, J., et al.: Fast, efficient error reconciliation for quantum (2002). 03.67: 2. http://lib-www.lanl.gov/cgi-bin/getfile?00796756.pdf

  23. Gallager, R.G.: Low-density parity-check codes. Inf. Theor. IRE Trans. 8(1), 21–28 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  24. Walenta, N., Burg, A., Caselunghe, D., et al.: A Fast and versatile QKD system with hardware key distillation and wavelength multiplexing (2013). arXiv preprint arXiv:13092583

  25. Vernam, G.S.: Cipher printing telegraph systems for secret wire and radio telegraphic communications. Trans. Am. Inst. Electr. Eng. XLV(2), 295–301 (1926)

    Google Scholar 

  26. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Technical J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  27. Koashi, M., Preskill, J.: Secure quantum key distribution with an uncharacterized source. Phys. Rev. Lett. 90(5), 057902 (2003)

    Article  Google Scholar 

  28. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  Google Scholar 

  29. Baiardi, F., Tonelli, F., Isoni, L.: Application vulnerabilities in risk assessment and management. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 7(2), 41–59 (2016)

    Google Scholar 

  30. Lim, K., Jeong, Y., Cho, S.-J., et al.: An android application protection scheme against dynamic reverse engineering attacks. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 7(3), 40–52 (2016)

    Google Scholar 

  31. Engle, R.D., Hodson, D.D., Grimaila, M.R., et al.: Modeling quantum optical components, pulses and fiber channels using OMNeT++. arXiv preprint arXiv:150903091 (2015)

  32. Mailloux, L., Engle, R., Grimaila, M., et al.: Modeling decoy state quantum key distribution systems. J. Defense Model. Simul. Appl. Methodol. Technol. 12(4), 489–506 (2015)

    Google Scholar 

  33. Mailloux, L., Grimaila, M., Hodson, D., et al.: A model and simulation framework for studying implementation non-idealities in quantum key distribution systems. IEEE Access 3, 110–130 (2015)

    Article  Google Scholar 

  34. Mailloux, L.O., Grimaila, M.R., Hodson, D.D., et al.: Modeling continuous time optical pulses in a quantum key distribution discrete event simulation. In: Proceedings of the International Conference on Security and Management (SAM). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2014)

    Google Scholar 

  35. Mailloux, L.O., Morris, J.D., Grimaila, M.R., et al.: A modeling framework for studying quantum key distribution system implementation nonidealities. Access 3, 110–130 (2015). IEEE

    Article  Google Scholar 

  36. Morris, J.D.: Conceptual modeling of a quantum key distribution simulation framework using the discrete event system specification. Air Force Institute of Technology (2014)

    Google Scholar 

  37. Morris, J.D., Grimaila, M.R., Hodson, D.D., et al.: Using the discrete event system specification to model quantum key distribution system components. J. Defense Model. Simul. Appl. Methodol. Technol. 12(4), 457–480 (2015)

    Google Scholar 

  38. Xu, B.: The Practical Security of Quantum Key Distribution System. Peking University (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Science Foundation of China under grant No. 61202488, Guangxi Cooperative Innovation Center of cloud computing and Big Data (No. YD16801,YD16505.), and the outstanding young scholar funding of NUDT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baokang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, X., Li, Y., Peng, Y., Zhao, B. (2018). Security Analysis Oriented Physical Components Modeling in Quantum Key Distribution. In: You, I., Leu, FY., Chen, HC., Kotenko, I. (eds) Mobile Internet Security. MobiSec 2016. Communications in Computer and Information Science, vol 797. Springer, Singapore. https://doi.org/10.1007/978-981-10-7850-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7850-7_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7849-1

  • Online ISBN: 978-981-10-7850-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics