Skip to main content

An Efficient Energy-Hole Alleviating Algorithm for Wireless Sensor Network Based on Energy-Balanced Clustering Protocol

  • Conference paper
  • First Online:
Wireless Sensor Networks (CWSN 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 812))

Included in the following conference series:

Abstract

Illegal nodes can send malicious data to WSN continuously, which will accelerate the energy consumption rate. Even if the cluster heads in the inner regions have been exhausted simultaneously, the ones in the outer regions may still hold sufficient energy resource. This situation is defined as energy-hole problem in WSN. To investigate the principle of such problem and design corresponding defense strategies, it is critical to analyze the configuration and distribution of cluster heads. According to the balance conditions of energy consumption, a novel mathematical model is formulated to accurately estimate the communication radius of cluster heads in network deployment. Then mobile sinks are introduced to gather the data transmitted by malicious nodes in circular regions. Considering the uniformity principle in collecting data and shortest path routing, the migration path of mobile sinks is calculated. An energy-hole alleviating algorithm is ultimately proposed based on the energy analysis in WSN. Finally, experimental results validate the efficiency and effectiveness of the proposed algorithm in energy-hole detection and mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nayak, P., Devulapalli, A.: A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sensors J. 16(1), 137–144 (2016)

    Article  Google Scholar 

  2. Sun, J., Zou, J., Huang, L.: Distributed optimization of lifetime and throughput with power consumption balance opportunistic routing in dynamic wireless sensor networks. Int. J. Distrib. Sensor Netw. 12(10), 1–15 (2016)

    Article  Google Scholar 

  3. Yu, X., Chang, X., Zhong, S., et al.: An efficient energy hole alleviating algorithm for wireless sensor networks. IEEE Trans. Consum. Electron. 60(3), 347–355 (2014)

    Article  Google Scholar 

  4. Zhang, D., Li, G., Zheng, K., et al.: An energy-balanced routing method based on forward-aware factor for wireless sensor networks. IEEE Trans. Industr. Inform. 10(1), 766–773 (2014)

    Article  Google Scholar 

  5. Pak, J.M., Ahn, C.K., Shi, P., et al.: Distributed hybrid particle/FIR filtering for mitigating NLOS effects in TOA-based localization using wireless sensor networks. IEEE Trans. Industr. Electron. 64(6), 5182–5191 (2017)

    Article  Google Scholar 

  6. Liu, Y., Dong, M., Ota, K., et al.: ActiveTrust: secure and trustable routing in wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 11(9), 2013–2027 (2016)

    Article  Google Scholar 

  7. Dong, M., Ota, K., Liu, A.: RMER: reliable and energy-efficient data collection for large-scale wireless sensor networks. IEEE Internet Things J. 3(4), 511–519 (2016)

    Article  Google Scholar 

  8. Han, G., Liu, L., Jiang, J., et al.: Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Trans. Industr. Inform. 13(1), 135–143 (2017)

    Article  Google Scholar 

  9. Kurt, S., Yildiz, H.U., Yigit, M., et al.: Packet size optimization in wireless sensor networks for smart grid applications. IEEE Trans. Industr. Electron. 64(3), 2392–2401 (2017)

    Article  Google Scholar 

  10. Kuo, T.W., Lin, K.C., Tsai, M.J.: On the construction of data aggregation tree with minimum energy cost in wireless sensor networks: NP-completeness and approximation algorithms. IEEE Trans. Comput. 65(10), 3109–3121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, H., Xing, H., Cheng, J., et al.: Secure resource allocation for OFDMA two-way relay wireless sensor networks without and with cooperative jamming. IEEE Trans. Industr. Inform. 12(5), 1714–1725 (2016)

    Article  Google Scholar 

  12. Gu, Y., Ren, F., Ji, Y., et al.: The evolution of sink mobility management in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 18(1), 507–524 (2016)

    Article  Google Scholar 

  13. Villas, L.A., Boukerche, A., Ramos, H.S., et al.: DRINA: a lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Trans. Comput. 62(4), 676–689 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ren, J., Zhang, Y., Zhang, K., et al.: Lifetime and energy hole evolution analysis in data-gathering wireless sensor networks. IEEE Trans. Industr. Inform. 12(2), 788–800 (2016)

    Article  MathSciNet  Google Scholar 

  15. Keskin, M.E., Altınel, İ.K., Aras, N., et al.: Wireless sensor network lifetime maximization by optimal sensor deployment, activity scheduling, data routing and sink mobility. Ad Hoc Netw. 17, 18–36 (2014)

    Article  Google Scholar 

  16. Farash, M.S., Turkanović, M., Kumari, S., et al.: An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the Internet of Things environment. Ad Hoc Netw. 36, 152–176 (2016)

    Article  Google Scholar 

  17. Salarian, H., Chin, K.W., Naghdy, F.: An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Trans. Veh. Technol. 63(5), 2407–2419 (2014)

    Article  Google Scholar 

  18. Abd, M.A., Al-Rubeaai, S.F., Singh, B.K., et al.: Extending wireless sensor network lifetime with global energy balance. IEEE Sensors J. 15(9), 5053–5063 (2015)

    Article  Google Scholar 

  19. Cheng, H., Su, Z., Xiong, N., et al.: Energy-efficient node scheduling algorithms for wireless sensor networks using Markov random field model. Inf. Sci. 329, 461–477 (2016)

    Article  Google Scholar 

  20. Liu, X.: A novel transmission range adjustment strategy for energy hole avoiding in wireless sensor networks. J. Netw. Comput. Appl. 67, 43–52 (2016)

    Article  Google Scholar 

  21. Lin, H., Uster, H.: Exact and heuristic algorithms for data-gathering cluster-based wireless sensor network design problem. IEEE/ACM Trans. Netw. 22(3), 903–916 (2014)

    Article  Google Scholar 

  22. Han, Z., Wu, J., Zhang, J., et al.: A general self-organized tree-based energy-balance routing protocol for wireless sensor network. IEEE Trans. Nuclear Sci. 61(2), 732–740 (2014)

    Article  Google Scholar 

  23. Yao, Y., Cao, Q., Vasilakos, A.V.: EDAL: an energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Trans. Netw. (TON) 23(3), 810–823 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, W., Yu, B. (2018). An Efficient Energy-Hole Alleviating Algorithm for Wireless Sensor Network Based on Energy-Balanced Clustering Protocol. In: Li, J., et al. Wireless Sensor Networks. CWSN 2017. Communications in Computer and Information Science, vol 812. Springer, Singapore. https://doi.org/10.1007/978-981-10-8123-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8123-1_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8122-4

  • Online ISBN: 978-981-10-8123-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics