Skip to main content

Elastic Net Regularized Dictionary Learning for Face Recognition

  • Conference paper
  • First Online:
Internet Multimedia Computing and Service (ICIMCS 2017)

Abstract

The sparse representation based classification (SRC) method and collaborative representation based classification (CRC) method attract more and more attention in recent years, due to their promising result and robustness for face recognition. However, both SRC and CRC algorithms directly use the training samples as the dictionary, which leads to large fitting error. Additionally, the subsequent research shows that the performance of face recognition is not only determined by the sparsity constraint (\(\ell _1\) regularizer), but also driven by the collaborative constraint (\(\ell _2\) regularizer). To overcome the issue mentioned above, in this paper, we propose an elastic net regularized dictionary learning based classification method. The proposed method is capable of improving the performance for face recognition according to class specific dictionary learning and elastic net regularizer. Moreover, to enhance the ability for handling nonlinear problems, we also extend the proposed method to arbitrary kernel space. Extensive experimental results on several face recognition benchmark datasets demonstrate the superior performance of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Russ, J.C.: The Image Processing Handbook. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  2. Pont-Tuset, J., Arbelaez, P., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 128–140 (2017)

    Article  Google Scholar 

  3. Liu, B.-D., Shen, B., Wang, Y.-X.: Class specific dictionary learning for face recognition. In: 2014 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), pp. 229–234. IEEE (2014)

    Google Scholar 

  4. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  5. Chang, H., Han, J., Zhong, C., Snijders, A., Mao, J.-H.: Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

  6. Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 849–862 (2013)

    Article  Google Scholar 

  7. Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1088–1099 (2006)

    Article  Google Scholar 

  8. Liu, T., Gong, M., Tao, D.: Large-cone nonnegative matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 28, 2129–2142 (2016)

    MathSciNet  Google Scholar 

  9. Liu, T., Tao, D.: On the performance of manhattan nonnegative matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1851–1863 (2016)

    Article  MathSciNet  Google Scholar 

  10. Shlens, J.: A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100 (2014)

  11. Yan, Y., Ricci, E., Subramanian, R., Liu, G., Sebe, N.: Multitask linear discriminant analysis for view invariant action recognition. IEEE Trans. Image Process. 23(12), 5599–5611 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tao, D., Li, X., Wu, X., Maybank, S.J.: Geometric mean for subspace selection. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 260–274 (2009)

    Article  Google Scholar 

  13. Zhong, F., Zhang, J., Li, D.: Discriminant locality preserving projections based on l1-norm maximization. IEEE Trans. Neural Netw. Learn. Syst. 25(11), 2065–2074 (2014)

    Article  Google Scholar 

  14. Chong, Y., He, X., Luo, Q., Peng, Y., Han, Y.: Face recognition method based on two-directional and modular fuzzy 2DPCA. In: Chinese Automation Congress (CAC), pp. 2027–2032. IEEE (2015)

    Google Scholar 

  15. Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10) (2007)

    Google Scholar 

  16. Wu, X., Li, Q., Xu, L., Chen, K., Yao, L.: Multi-feature kernel discriminant dictionary learning for face recognition. Pattern Recogn. 66, 404–411 (2017)

    Article  Google Scholar 

  17. Wei, C.-P., Chao, Y.-W., Yeh, Y.-R., Wang, Y.-C.F.: Locality-sensitive dictionary learning for sparse representation based classification. Pattern Recogn. 46(5), 1277–1287 (2013)

    Article  MATH  Google Scholar 

  18. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  19. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 471–478. IEEE (2011)

    Google Scholar 

  20. Wang, H., Yuan, C., Hu, W., Sun, C.: Supervised class-specific dictionary learning for sparse modeling in action recognition. Pattern Recogn. 45(11), 3902–3911 (2012)

    Article  Google Scholar 

  21. Wang, D., Kong, S.: A classification-oriented dictionary learning model: explicitly learning the particularity and commonality across categories. Pattern Recogn. 47(2), 885–898 (2014)

    Article  MATH  Google Scholar 

  22. Shu, X., Tang, J., Qi, G.-J., Li, Z., Jiang, Y.-G., Yan, S.: Image classification with tailored fine-grained dictionaries. IEEE Trans. Circ. Syst. Video Technol. (2016)

    Google Scholar 

  23. Liu, B.-D., Gui, L., Wang, Y., Wang, Y.-X., Shen, B., Li, X., Wang, Y.-J.: Class specific centralized dictionary learning for face recognition. Multimedia Tools Appl. 76(3), 4159–4177 (2017)

    Article  Google Scholar 

  24. Liu, B.-D., Wang, Y.-X., Shen, B., Zhang, Y.-J., Hebert, M.: Self-explanatory sparse representation for image classification. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 600–616. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_39

    Google Scholar 

  25. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

Download references

Acknowledgments

This paper is supported partly by the National Natural Science Foundation of China (Grant No. 61402535, No. 61271407), the Natural Science Foundation for Youths of Shandong Province, China (Grant No. ZR2014FQ001), Qingdao Science and Technology Project (No. 14-2-4-111-jch), and the Fundamental Research Funds for the Central Universities, China University of Petroleum (East China) (Grant No. 16CX02060A), International S And T Cooperation Program of China (Grant No. 2015DFG12050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Wang, YJ., Liu, BD. (2018). Elastic Net Regularized Dictionary Learning for Face Recognition. In: Huet, B., Nie, L., Hong, R. (eds) Internet Multimedia Computing and Service. ICIMCS 2017. Communications in Computer and Information Science, vol 819. Springer, Singapore. https://doi.org/10.1007/978-981-10-8530-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8530-7_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8529-1

  • Online ISBN: 978-981-10-8530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics