Skip to main content

GMM Based Single Depth Image Super-Resolution

  • Conference paper
  • First Online:
Computer Vision, Pattern Recognition, Image Processing, and Graphics (NCVPRIPG 2017)

Abstract

Super-resolution (SR) is a technique to improve the resolution of an image from a sequence of input images or from a single image. As SR is an ill-posed inverse problem, it leads to many suboptimal solutions. Since modern depth cameras suffer from low-spatial resolution and are noisy, we present a Gaussian mixture model (GMM) based method for depth image super-resolution (SR). We train GMM from a set of high-resolution and low-resolution (HR-LR) synthetic training depth images to learn the relation between the HR and the LR patches in the form of covariance matrices. We use expectation-maximization (EM) algorithm to converge to an optimal solution. We show the promising results qualitatively and quantitatively in comparison to other depth image SR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chan, D., Buisman, H., Theobalt, C., Thrun, S.: A noise-aware filter for real-time depth upsampling. In: 2008 Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications-M2SFA2 (2008)

    Google Scholar 

  2. Diebel, J., Thrun, S.: An application of markov random fields to range sensing. In: NIPS, vol. 5, pp. 291–298 (2005)

    Google Scholar 

  3. Ferstl, D., Reinbacher, C., Ranftl, R., Rüther, M., Bischof, H.: Image guided depth upsampling using anisotropic total generalized variation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 993–1000 (2013)

    Google Scholar 

  4. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  5. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 349–356. IEEE (2009)

    Google Scholar 

  6. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_1

    Chapter  Google Scholar 

  7. Hua, K.L., Lo, K.H., Wang, Y.C.F.F.: Extended guided filtering for depth map upsampling. IEEE Multimed. 23(2), 72–83 (2016)

    Article  Google Scholar 

  8. Konno, Y., Monno, Y., Kiku, D., Tanaka, M., Okutomi, M.: Intensity guided depth upsampling by residual interpolation. In: The Abstracts of the International Conference on Advanced Mechatronics, Toward Evolutionary Fusion of IT and Mechatronics (ICAM) Abstracts, vol. 2015, pp. 1–2 (2015)

    Article  Google Scholar 

  9. Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graph. (ToG) 26, 96 (2007)

    Article  Google Scholar 

  10. Li, J., Lu, Z., Zeng, G., Gan, R., Zha, H.: Similarity-aware patchwork assembly for depth image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3374–3381 (2014)

    Google Scholar 

  11. Mac Aodha, O., Campbell, N.D.F., Nair, A., Brostow, G.J.: Patch based synthesis for single depth image super-resolution. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 71–84. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_6

    Chapter  Google Scholar 

  12. Sandeep, P., Jacob, T.: Single image super-resolution using a joint GMM method. IEEE Trans. Image Process. 25(9), 4233–4244 (2016)

    MathSciNet  Google Scholar 

  13. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

    Article  Google Scholar 

  14. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: 1998 Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)

    Google Scholar 

  15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Shaker Balure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balure, C.S., Kini, M.R., Bhavsar, A. (2018). GMM Based Single Depth Image Super-Resolution. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds) Computer Vision, Pattern Recognition, Image Processing, and Graphics. NCVPRIPG 2017. Communications in Computer and Information Science, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-13-0020-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0020-2_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0019-6

  • Online ISBN: 978-981-13-0020-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics