Skip to main content

Multi-modal Image Analysis for Plant Stress Phenotyping

  • Conference paper
  • First Online:
Book cover Computer Vision, Pattern Recognition, Image Processing, and Graphics (NCVPRIPG 2017)

Abstract

Drought stress detection involves multi-modal image analysis with high spatio-temporal resolution. Identification of digital traits that characterizes drought stress response (DSR) is challenging due to high volume of image based features. Also, the labelled data that categorizes DSR are either unavailable or subjectively developed, which is a low-throughput and error-prone task. Therefore, we propose a novel framework that provides an automated scoring of DSR based on multi-trait fusion. k-means clustering was used to extract latent drought clusters and the relevant traits were identified using Support Vector Machine-Recursive Feature Extraction (SVM-RFE). Using these traits, SVM based DSR classification model was constructed. The framework has been validated on visible and thermal shoot images of rice plants, yielding 95% accuracy. Various imaging modalities can be integrated with the proposed framework, thus making it scalable as no prior information about the DSR was assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furbank, R.T., Tester, M.: Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16(12), 635–644 (2011)

    Article  Google Scholar 

  2. Ghanem, M.E., Marrou, H., Sinclair, T.R.: Physiological phenotyping of plants for crop improvement. Trends Plant Sci. 20(3), 139–144 (2015)

    Article  Google Scholar 

  3. Li, L., Zhang, Q., Huang, D.: A review of imaging techniques for plant phenotyping. Sensors 14(11), 20078–20111 (2014)

    Article  Google Scholar 

  4. Singh, A., Ganapathysubramanian, B., Singh, A.K., Sarkar, S.: Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21(2), 110–124 (2016)

    Article  Google Scholar 

  5. Romer, C., Wahabzada, M., Ballvora, A., Pinto, F., Rossini, M., Panigada, C., Behmann, J., Leon, J., Thurau, C., Bauckhage, C., et al.: Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis. Funct. Plant Biol. 39(11), 878–890 (2012)

    Article  Google Scholar 

  6. Kersting, K., Xu, Z., Wahabzada, M., Bauckhage, C., Thurau, C., Roemer, C., Ballvora, A., Rascher, U., Leon, J., Pluemer, L.: Pre-symptomatic prediction of plant drought stress using Dirichlet aggregation regression on hyperspectral images. In: AAAI (2012)

    Google Scholar 

  7. Smith, H.K., Clarkson, G.J., Taylor, G., Thompson, A.J., Clarkson, J., Rajpoot, N.M., et al.: Automatic detection of regions in spinach canopies responding to soil moisture deficit using combined visible and thermal imagery. PLoS ONE 9(6), e97612 (2014)

    Article  Google Scholar 

  8. Humplík, J.F., Lazar, D., Husickova, A., Spíchal, L.: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses–a review. Plant Methods 11(1), 1 (2015)

    Article  Google Scholar 

  9. Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., Klukas, C.: Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 26(12), 4636–4655 (2014)

    Article  Google Scholar 

  10. Minervini, M., Scharr, H., Tsaftaris, S.A.: Image analysis: the new bottleneck in plant phenotyping [applications corner]. IEEE Signal Process. Mag. 32(4), 126–131 (2015)

    Article  Google Scholar 

  11. Barrs, H., Weatherley, P.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15(3), 413–428 (1962)

    Article  Google Scholar 

  12. Richardson, A.D., Duigan, S.P., Berlyn, G.P.: An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 153(1), 185–194 (2002)

    Article  Google Scholar 

  13. Munne-Bosch, S., Alegre, L.: Die and let live: leaf senescence contributes to plant survival under drought stress. Funct. Plant Biol. 31(3), 203–216 (2004)

    Article  Google Scholar 

  14. Pask, A., Pietragalla, J.: Leaf area, green crop area and senescence. In: Pask, A., Pietragalla, J., Mullan, D., Reynolds, M. (eds.) Physiological Breeding II: A Field Guide to Wheat Phenotyping, pp. 58–62 (2012)

    Google Scholar 

  15. Neilson, E.H., Edwards, A., Blomstedt, C., Berger, B., Moller, B.L., Gleadow, R.: Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J. Exp. Bot. (2015). https://doi.org/10.1093/jxb/eru526

  16. Fahlgren, N., Feldman, M., Gehan, M.A., Wilson, M.S., Shyu, C., Bryant, D.W., Hill, S.T., McEntee, C.J., Warnasooriya, S.N., Kumar, I., et al.: A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Mol. Plant 8(10), 1520–1535 (2015)

    Article  Google Scholar 

  17. Boykov, O.V.Y., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1 (2001)

    Article  Google Scholar 

  18. Klukas, C., Chen, D., Pape, J.-M.: Integrated analysis platform: an open-source information system for high-throughput plant phenotyping. Plant Physiol. 165(2), 506–518 (2014)

    Article  Google Scholar 

  19. Breiman, L.: Statistics with a View Toward Applications, vol. 1. Houghton Mifflin Co., Boston (1973)

    MATH  Google Scholar 

  20. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)

    Article  MathSciNet  Google Scholar 

  21. Jones, H.G., Serraj, R., Loveys, B.R., Xiong, L., Wheaton, A., Price, A.H.: Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 36(11), 978–989 (2009)

    Article  Google Scholar 

  22. Leinonen, I., Jones, H.G.: Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J. Exp. Bot. 55(401), 1423–1431 (2004)

    Article  Google Scholar 

  23. Raghunathan, S., Stredney, D., Schmalbrock, P., Clymer, B.D.: Image registration using rigid registration and maximization of mutual information. In: The 13th Annual Medicine Meets Virtual Reality Conference, Poster Presented at: MMVR13 (2005)

    Google Scholar 

  24. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, no. 14, pp. 281–297 (1967)

    Google Scholar 

  25. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  26. Hanson, A.D.: Drought resistance in rice. Nature 345, 26–27 (1990)

    Article  Google Scholar 

  27. Maldonado, S., Weber, R.: A wrapper method for feature selection using support vector machines. Inf. Sci. 179(13), 2208–2217 (2009)

    Article  Google Scholar 

  28. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  29. Liu, Y., You, Z., Cao, L.: A novel and quick SVM-based multi-class classifier. Pattern Recognit. 39(11), 2258–2264 (2006)

    Article  Google Scholar 

  30. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification. In: NIPS, vol. 12, pp. 547–553 (1999)

    Google Scholar 

  31. Blum, A.: Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop. Res. 112(2), 119–123 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Bhugra .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 503 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhugra, S., Anupama, A., Chaudhury, S., Lall, B., Chugh, A. (2018). Multi-modal Image Analysis for Plant Stress Phenotyping. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds) Computer Vision, Pattern Recognition, Image Processing, and Graphics. NCVPRIPG 2017. Communications in Computer and Information Science, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-13-0020-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0020-2_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0019-6

  • Online ISBN: 978-981-13-0020-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics