Skip to main content

On Linear Theory of Thermoelasticity for an Anisotropic Medium Under a Recent Exact Heat Conduction Model

  • Conference paper
  • First Online:
Mathematics and Computing (ICMC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 834))

Included in the following conference series:

Abstract

The aim of this paper is to discuss about a new thermoelasticity theory for a homogeneous and anisotropic medium in the context of a recent heat conduction model proposed by Quintanilla (2011). The coupled thermoelasticity being the branch of science that deals with the mutual interactions between temperature and strain in an elastic medium had become the interest of researchers since 1956. Quintanilla (2011) have introduced a new model of heat conduction in order to reformulate the heat conduction law with three phase-lags and established mathematical consistency in this new model as compared to the three phase-lag model. This model has also been extended to thermoelasticity theory. Various Taylor’s expansion of this model has gained the interest of many researchers in recent times. Hence, we considered the model’s backward time expansion of Taylor’s series upto second-order and establish some important theorems. Firstly, uniqueness theorem of a mixed type boundary and initial value problem is proved using specific internal energy function. Later, we give the alternative formulation of the problem using convolution which incorporates the initial conditions into the field equations. Using this formulation, the convolution type variational theorem is proved. Further, we establish a reciprocal relation for the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  2. Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39(3), 355–376 (1986)

    Article  Google Scholar 

  3. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Article  Google Scholar 

  4. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  Google Scholar 

  5. Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stresses 22, 451–476 (1999)

    Article  MathSciNet  Google Scholar 

  6. Dreyer, W., Struchtrup, H.: Heat pulse experiments revisited. Continuum Mech. Therm. 5, 3–50 (1993)

    Article  MathSciNet  Google Scholar 

  7. Ozisik, M.N., Tzou, D.Y.: On the wave theory of heat conduction. ASME J. Heat Transfer 116, 526–535 (1994)

    Article  Google Scholar 

  8. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity With Finite Wave Speeds. Oxford University Press, New York (2010)

    MATH  Google Scholar 

  9. Muller, I., Ruggeri, T.: Extended Thermodynamics. Springer Tracts on Natural Philosophy. Springer, New York (1993). https://doi.org/10.1007/978-1-4684-0447-0

    Book  MATH  Google Scholar 

  10. Marín, E.: Does Fourier’s law of heat conduction contradict the theory of relativity? Latin-American J. Phys. Edu. 5, 402–405 (2011)

    Google Scholar 

  11. Lord, H.W., Shulman, Y.A.: Generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  Google Scholar 

  12. Green, A.E., Lindasy, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  Google Scholar 

  13. Cattaneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus 247, 431–433 (1958)

    MATH  Google Scholar 

  14. Vernotte, P.: Les paradoxes de la theorie continue de l’equation de la chaleur. Compte Rendus 246, 3154–3155 (1958)

    MATH  Google Scholar 

  15. Vernotte, P.: Some possible complications in the phenomena of thermal conduction. Compte Rendus 252, 2190–2191 (1961)

    Google Scholar 

  16. Green, A.E., Naghdi, P.M.: A re-examination of the base postulates of thermoemechanics. Proc. R. Soc. Lond. A 432, 171–194 (1991)

    Article  Google Scholar 

  17. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  18. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  19. Tzou, D.Y.: A unified field approach for heat conduction from macro to micro scales. ASME J. Heat Transfer 117, 8–16 (1995)

    Article  Google Scholar 

  20. Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transfer 38(17), 3231–3240 (1995)

    Article  Google Scholar 

  21. Roychoudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30, 231–238 (2007)

    Article  Google Scholar 

  22. Dreher, M., Quintanilla, R., Racke, R.: Ill-posed problems in thermomechanics. Appl. Math. Lett. 22, 1374–1379 (2009)

    Article  MathSciNet  Google Scholar 

  23. Quintanilla, R.: Exponential stability in the dual-phase-lag heat conduction theory. J. Non-Equilib. Thermodyn. 27, 217–227 (2002)

    Article  Google Scholar 

  24. Horgan, C.O., Quintanilla, R.: Spatial behaviour of solutions of the dual-phase-lag heat equation. Math. Methods Appl. Sci. 28, 43–57 (2005)

    Article  MathSciNet  Google Scholar 

  25. Kumar, R., Mukhopadhyay, S.: Analysis of the effects of phase-lags on propagation of harmonic plane waves in thermoelastic media. Comput. Methods Sci. Tech. 16(1), 19–28 (2010)

    Article  Google Scholar 

  26. Mukhopadhyay, S., Kumar, R.: Analysis of phase-lag effects on wave propagation in a thick plate under axisymmetric temperature distribution. Acta Mech. 210, 331–344 (2010)

    Article  Google Scholar 

  27. Mukhopadhyay, S., Kothari, S., Kumar, R.: On the representation of solutions for the theory of generalized thermoelasticity with three phase-lags. Acta Mech. 214, 305–314 (2010)

    Article  Google Scholar 

  28. Quintanilla, R.: A condition on the delay parameters in the one-dimensional dual-phase-lag thermoelastic theory. J. Therm. Stresses 26, 713–721 (2003)

    Article  MathSciNet  Google Scholar 

  29. Quintanilla, R., Racke, R.: A note on stability of dual-phase-lag heat conduction. Int. J. Heat Mass Transfer 49, 1209–1213 (2006)

    Article  Google Scholar 

  30. Quintanilla, R., Racke, R.: Qualitative aspects in dual-phase-lag thermoelasticity. SIAM J. Appl. Math. 66, 977–1001 (2006)

    Article  MathSciNet  Google Scholar 

  31. Quintanilla, R., Racke, R.: Qualitative aspects in dual-phase-lag heat conduction. Proc. R. Soc. Lond. A 463, 659–674 (2007)

    Article  MathSciNet  Google Scholar 

  32. Quintanilla, R., Racke, R.: A note on stability in three-phase-lag heat conduction. Int. J. Heat Mass Transfer 51, 24–29 (2008)

    Article  Google Scholar 

  33. Quintanilla, R.: Some solutions for a family of exact phase-lag heat conduction problems. Mech. Res. Commun. 38, 355–360 (2011)

    Article  Google Scholar 

  34. Leseduarte, M.C., Quintanilla, R.: Phragman-Lindelof alternative for an exact heat conduction equation with delay. Commun. Pure Appl. Math. 12(3), 1221–1235 (2013)

    MATH  Google Scholar 

  35. Quintanilla, R.: On uniqueness and stability for a thermoelastic theory. Math. Mech. Solids 22(6), 1387–1396 (2017)

    Article  MathSciNet  Google Scholar 

  36. Ignaczak, J.: A completeness problem for stress equations of motion in the linear elasticity theory. Arch. Mech. Stos 15, 225–234 (1963)

    MathSciNet  MATH  Google Scholar 

  37. Gurtin, M.E.: Variational principles for linear Elastodynamics. Arch. Ration. Mech. Anal. 16, 34–50 (1964)

    Article  MathSciNet  Google Scholar 

  38. Iesan, D.: Principes variationnels dans la theorie de la thermoelasticite couplee. Ann. Sci. Univ. ‘Al. I. Cuza’ Iasi Mathematica 12, 439–456 (1966)

    MATH  Google Scholar 

  39. Iesan, D.: On some reciprocity theorems and variational theorems in linear dynamic theories of continuum mechanics. Memorie dell’Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. Ser. 4(17), 17–37 (1974)

    MathSciNet  MATH  Google Scholar 

  40. Nickell, R., Sackman, J.: Variational principles for linear coupled thermoelasticity. Quart. Appl. Math. 26, 11–26 (1968)

    Article  MathSciNet  Google Scholar 

  41. Iesan, D.: Sur la théorie de la thermoélasticité micropolaire couplée. C. Rend. Acad. Sci. Paris 265, 271–275 (1967)

    MATH  Google Scholar 

  42. Nowacki, W.: Fundamental relations and equations of thermoelasticity. In: Francis, P.H., Hetnarski, R.B. (eds.) Dynamic Problems of Thermoelasticity (English Edition). Noordhoff Internationa Publishing, Leyden (1975)

    Google Scholar 

  43. Maysel, V.M.: The Temperature Problem of the Theory of Elasticity. Kiev (1951). (in Russian)

    Google Scholar 

  44. Predeleanu, P.M.: On thermal stresses in viscoelastic bodies. Bull. Math. Soc. Sci. Math. Phys. 3(51), 223–228 (1959)

    MathSciNet  MATH  Google Scholar 

  45. Ionescu-Cazimir, V.: Problem of linear thermoelasticity: theorems on reciprocity I. Bull. Acad. Polon. Sci. Ser. Sci. Tech. 12, 473–480 (1964)

    MATH  Google Scholar 

  46. Scalia, A.: On some theorems in the theory of micropolar thermoelasticity. Int. J. Eng. Sci. 28, 181–189 (1990)

    Article  MathSciNet  Google Scholar 

  47. Lebon, G.: Variational Principles in Thermomechanics. Springer-Wien, New York (1980). https://doi.org/10.1007/978-3-540-88467-5

    Book  Google Scholar 

  48. Carlson, D.E.: Linear thermoelasticity. In: Truesdell, C. (ed.) Flugge’s Handbuch der Physik, vol. VI a/2, pp. 297–345. Springer, Heidelberg (1973). https://doi.org/10.1007/978-3-662-39776-3_2

    Chapter  Google Scholar 

  49. Hetnarski, R.B., Ignaczak, J.: Mathematical Theory of Elasticity. Taylor and Francis, New York (2004)

    MATH  Google Scholar 

  50. Hetnarski, R.B., Eslami, M.R.: Thermal Stresses: Advanced Theory and Applications. In: Gladwell, G.M.L. (ed.) Solid Mechanics and Its Applications, vol. 158. Springer, Dordrecht (2010). https://doi.org/10.1007/978-1-4020-9247-3

  51. Chirita, S., Ciarletta, M.: Reciprocal and variational principles in linear thermoelasticity without energy dissipation. Mech. Res. Commun. 37, 271–275 (2010)

    Article  Google Scholar 

  52. Mukhopadhyay, S., Prasad, R.: Variational and reciprocal principles in linear theory of type-III thermoelasticity. Math. Mech. Solids 16, 435–444 (2011)

    Article  MathSciNet  Google Scholar 

  53. Kothari, S., Mukhopadhyay, S.: Some theorems in linear thermoelasticity with dual phase-lags for an Anisotropic Medium. J. Therm. Stresses 36, 985–1000 (2013)

    Article  Google Scholar 

  54. Kumari, B., Mukhopadhyay, S.: Some theorems on linear theory of thermoelasticity for an anisotropic medium under an exact heat conduction model with a delay. Math. Mech. Solids 22(5), 1177–1189 (2016, 2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manushi Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, M., Mukhopadhyay, S. (2018). On Linear Theory of Thermoelasticity for an Anisotropic Medium Under a Recent Exact Heat Conduction Model. In: Ghosh, D., Giri, D., Mohapatra, R., Savas, E., Sakurai, K., Singh, L. (eds) Mathematics and Computing. ICMC 2018. Communications in Computer and Information Science, vol 834. Springer, Singapore. https://doi.org/10.1007/978-981-13-0023-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0023-3_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0022-6

  • Online ISBN: 978-981-13-0023-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics