Skip to main content

Spectrum Decision Mechanisms in Cognitive Radio Networks

  • Chapter
  • First Online:
Emerging Wireless Communication and Network Technologies

Abstract

An open issue in cognitive radio networks (CRNs) is spectrum decision, which is the capability of a cognitive radio to efficiently choose a spectrum band to accomplish the quality of service (QoS) requirements of secondary users (SU) so as not to interfere primary users (PU). A complete mechanism for spectrum decision must take into account a detailed set of information parameters, ranging from spectrum occupancy statistics to the final spectrum allocation for an SU. Spectrum decision is a very important issue in CRNs; however, to date, there is still plenty of research work to do. One solution for such a process that has attracted a lot of attention is based on multiple attribute decision-making (MADM) mechanisms fed with actual information of spectrum occupancy. In this chapter, we provide a brief review of several techniques for spectrum decision in CRNs. We describe the main mechanisms that have been proposed by providing a comparative characterization among them, as well as an overview of the affordability of such mechanisms according to the demands for SUs. Finally, we discuss the impact on CRNs of emerging trends such as cloud CRN and Internet of Things (IoT) in cognitive radio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilar-Gonzalez, R., Cardenas-Juarez, M., Pineda-Rico, U., Arce, A., Latva-aho, M., Stevens-Navarro, E.: Reducing spectrum handoffs and energy switching consumption of MADM-based decisions in cognitive radio networks. Mobile Information Systems 2016, 1–14 (2016). https://doi.org/10.1155/2016/6157904

  2. Aguilar-Gonzalez, R., Cardenas-Juarez, M., Pineda-Rico, U., Stevens-Navarro, E.: Performance of MADM algorithms with real spectrum measurements for spectrum decision in cognitive radio networks. In: 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE (2014). https://doi.org/10.1109/iceee.2014.6978282

  3. Akyildiz, I., Lee, W.Y., Vuran, M., Mohanty, S.: A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine 46(4), 40–48 (2008). https://doi.org/10.1109/mcom.2008.4481339

  4. Akyildiz, I.F., Lee, W.Y., Vuran, M.C., Mohanty, S.: NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks 50(13), 2127–2159 (2006). https://doi.org/10.1016/j.comnet.2006.05.001

  5. Anvari, A., Zulkifli, N., Arghish, O.: Application of a modified vikor method for decision-making problems in lean tool selection. The international journal of advanced manufacturing technology 71(5–8), 829–841 (2014). https://doi.org/10.1007/s00170-013-5520-x

  6. Arienzo, L., Tarchi, D.: Statistical modeling of spectrum sensing energy in multi-hop cognitive radio networks. IEEE Signal Processing Letters 22(3), 356–360 (2015). https://doi.org/10.1109/lsp.2014.2360234

  7. Bayhan, S., Alagoz, F.: Scheduling in centralized cognitive radio networks for energy efficiency. IEEE Transactions on Vehicular Technology 62(2), 582–595 (2013). https://doi.org/10.1109/tvt.2012.2225650

  8. Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J.: A state-of the-art survey of topsis applications. Expert Systems with Applications 39(17), 13,051–13,069 (2012). https://doi.org/10.1016/j.eswa.2012.05.056

  9. Bian, K., Park, J.M., Gao, B.: Cognitive Radio Networks. Springer International Publishing (2014). https://doi.org/10.1007/978-3-319-07329-3

  10. Canberk, B., Akyildiz, I.F., Oktug, S.: A QoS-aware framework for available spectrum characterization and decision in cognitive radio networks. In: 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1533–1538. IEEE (2010). https://doi.org/10.1109/pimrc.2010.5671959

  11. Castellanos-Lopez, S.L., Cruz-Perez, F.A., Hernandez-Valdez, G.: Performance of cognitive radio networks under ON/OFF and poisson primary arrival models. In: IEEE 22nd International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 609–613. IEEE (2011). https://doi.org/10.1109/pimrc.2011.6140034

  12. Chen, D., Yang, J., Wu, J., Tang, H., Huang, M.: Spectrum occupancy analysis based on radio monitoring network. In: 1st IEEE International Conference on Communications in China (ICCC). IEEE (2012). https://doi.org/10.1109/iccchina.2012.6356981

  13. Churchman, C.W., Ackoff, R.L.: An approximate measure of va1ue. Journal of the Operations Research Society of America 2(2), 172–187 (1954). https://doi.org/10.1287/opre.2.2.172

  14. Cordeiro, C., Challapali, K., Birru, D., Shankar, S.: IEEE 802.22: the first worldwide wireless standard based on cognitive radios. In: First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks DySPAN, pp. 328–337. IEEE (2005). https://doi.org/10.1109/dyspan.2005.1542649

  15. Das, D., Das, S.: Interference-aware power allocation in soft decision fusion (SDF) based cooperative spectrum sensing. In: Annual IEEE India Conference (INDICON). IEEE (2014). https://doi.org/10.1109/indicon.2014.7030618

  16. Flores, A.B., Guerra, R.E., Knightly, E.W., Ecclesine, P., Pandey, S.: IEEE 802.11af: a standard for TV white space spectrum sharing. IEEE Communications Magazine 51(10), 92–100 (2013). https://doi.org/10.1109/mcom.2013.6619571

  17. Grissa, M., Hamdaoui, B., Yavuz, A.A.: Location privacy in cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials pp. 1726–1760 (2017). https://doi.org/10.1109/comst.2017.2693965

  18. Hasegawa, M., Hirai, H., Nagano, K., Harada, H., Aihara, K.: Optimization for centralized and decentralized cognitive radio networks. Proceedings of the IEEE 102(4), 574–584 (2014). https://doi.org/10.1109/jproc.2014.2306255

  19. Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 23(2), 201–220 (2005). https://doi.org/10.1109/jsac.2004.839380

  20. He, A., Srikanteswara, S., Reed, J.H., Chen, X., Tranter, W.H., Bae, K.K., Sajadieh, M.: Minimizing energy consumption using cognitive radio. In: IEEE International Performance, Computing and Communications Conference. IEEE (2008). https://doi.org/10.1109/pccc.2008.4745093

  21. Hillery, W.J., Mangalvedhe, N., Bartlett, R., Huang, Z., Kovacs, I.Z.: A network performance study of LTE in unlicensed spectrum. In: IEEE Globecom Workshops (GC Wkshps). IEEE (2015). https://doi.org/10.1109/glocomw.2015.7414108

  22. Hoan, T.N.K., Koo, I.: Partially observable markov decision process-based sensing scheduling for decentralised cognitive radio networks with the awareness of channel switching delay and imperfect sensing. IET Communications 10(6), 651–660 (2016). https://doi.org/10.1049/iet-com.2014.1260

  23. Hossian, E., Niyato, D., Han, Z.: Dynamic Spectrum Access and Management in Cognitive Radio. Cambridge University Press (2009)

    Google Scholar 

  24. Hoyhtya, M., Pollin, S., Mammela, A.: Improving the performance of cognitive radios through classification, learning, and predictive channel selection. Advances in Electronics and Telecommunications 2(4), 28–38 (2011)

    Google Scholar 

  25. Hwang, C.L., Yoon, K.: Multiple attribute decision making, methods and applications. Tech. rep., Springer Verlag (1981)

    Google Scholar 

  26. Islam, M.H., Koh, C.L., Oh, S.W., Qing, X., Lai, Y.Y., Wang, C., Liang, Y.C., Toh, B.E., Chin, F., Tan, G.L., Toh, W.: Spectrum survey in singapore: Occupancy measurements and analyses. In: 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom). IEEE (2008). https://doi.org/10.1109/crowncom.2008.4562457

  27. Jaberidoost, M., Olfat, L., Hosseini, A., Kebriaeezadeh, A., Abdollahi, M., Alaeddini, M., Dinarvand, R.: Pharmaceutical supply chain risk assessment in iran using analytic hierarchy process (ahp) and simple additive weighting (saw) methods. Journal of the Operations Research Society of America 8(9), 1–10 (2015). https://doi.org/10.1186/s40545-015-0029-3

  28. Jahan, A., Edwards, K.L., Bahraminasab, M.: Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design. Butterworth-Heinemann (2013). https://doi.org/10.1016/C2012-0-02834-7

  29. Jha, S., Rashid, M., Bhargava, V., Despins, C.: Medium access control in distributed cognitive radio networks. IEEE Wireless Communications 18(4), 41–51 (2011). https://doi.org/10.1109/mwc.2011.5999763

  30. Khan, A.A., Rehmani, M.H., Rachedi, A.: Cognitive-radio-based internet of things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wireless Communications 24(3), 17–25 (2017). https://doi.org/10.1109/mwc.2017.1600404

  31. Lee, W.Y., Akyldiz, I.F.: A spectrum decision framework for cognitive radio networks. IEEE Transactions on Mobile Computing 10(2), 161–174 (2011). https://doi.org/10.1109/tmc.2010.147

  32. Li, Y., Chen, Z., Gong, Y.: Optimal power allocation for coordinated transmission in cognitive radio networks. In: IEEE 81st Vehicular Technology Conference (VTC Spring). IEEE (2015). https://doi.org/10.1109/vtcspring.2015.7145983

  33. Lopez-Benitez, M., Casadevall, F.: Discrete-time spectrum occupancy model based on markov chain and duty cycle models. In: IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 90–99. IEEE (2011). https://doi.org/10.1109/dyspan.2011.5936273

  34. Lopez-Benitez, M., Umbert, A., Casadevall, F.: Evaluation of spectrum occupancy in spain for cognitive radio applications. In: IEEE 69th Vehicular Technology Conference. IEEE (2009). https://doi.org/10.1109/vetecs.2009.5073544

  35. Malon, K., Skokowski, P., Marszalek, P., Kelner, J.M., Lopatka, J.: Cognitive manager for hierarchical cluster networks based on multi-stage machine method. In: IEEE Military Communications Conference, pp. 428–433. IEEE (2014). https://doi.org/10.1109/milcom.2014.77

  36. Masonta, M.T., Mzyece, M., Ntlatlapa, N.: Spectrum decision in cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials 15(3), 1088–1107 (2013). https://doi.org/10.1109/surv.2012.111412.00160

  37. McHenry, M.A., McCloskey, D., Lane-Roberts, G.: Spectrum occupancy measurements, location 4 of 6: Republican national convention, new york city, new york, august 30, 2004 - september 3, 2004, revision 2. Tech. rep., Shared Spectrum Company Report (2005)

    Google Scholar 

  38. Mitola, J., Maguire, G.: Cognitive radio: making software radios more personal. IEEE Personal Communications 6(4), 13–18 (1999). https://doi.org/10.1109/98.788210

  39. Mokari, N., Saeedi, H., Navaie, K.: Channel coding increases the achievable rate of the cognitive networks. IEEE Communications Letters 17(3), 495–498 (2013). https://doi.org/10.1109/lcomm.2013.012313.122437

  40. Notice of proposed rulemaking and order, et docket no 03-222. Tech. rep., Federal Communications Commission (2003)

    Google Scholar 

  41. Opricovic, S.: Multicriteria optimization of civil engineering systems. Ph.D. thesis, Faculty of Civil Engineering, Belgrade (1998)

    Google Scholar 

  42. Ozcan, G., Gursoy, M.C., Gezici, S.: Error rate analysis of cognitive radio transmissions with imperfect channel sensing. In: IEEE 78th Vehicular Technology Conference (VTC Fall), pp. 1642–1655. IEEE (2013). https://doi.org/10.1109/vtcfall.2013.6692196

  43. Perez-Romero, J., Raschella, A., Sallent, O., Umbert, A.: A belief-based decision-making framework for spectrum selection in cognitive radio networks. IEEE Transactions on Vehicular Technology 65(10), 8283–8296 (2016). https://doi.org/10.1109/tvt.2015.2508646

  44. Stevens-Navarro, E., Gallardo-Medina, R., Rico, U.P., Acosta-Elias, J.: Application of madm method vikor for vertical handoff in heterogeneous wireless networks. IEICE Transactions on Communications E95B(2), 599–602 (2012). https://doi.org/10.1587/transcom.E95.B.599

  45. Stevens-Navarro, E., Wong, V.W.: Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. In: IEEE Vehicular Technology Conference, (VTC-Spring), pp. 947–951. IEEE (2006). https://doi.org/10.1109/WCNC.2004.1311263

  46. Su, W., Liao, Y.: A jury-based trust management mechanism in distributed cognitive radio networks. China Communications 12(7), 119–126 (2015). https://doi.org/10.1109/cc.2015.7188530

  47. Tadayon, N., Aissa, S.: Modeling and analysis framework for multi-interface multi-channel cognitive radio networks. IEEE Transactions on Wireless Communications 14(2), 935–947 (2015). https://doi.org/10.1109/twc.2014.2362535

  48. Tzeng, G.H., Huang, J.J.: Multiple Attribute Decision Making, Methods and Applications. CRC Press (2011). https://doi.org/10.1201/b11032

  49. Wang, J., Song, M.S., Santhiveeran, S., Lim, K., Ko, G., Kim, K., Hwang, S.H., Ghosh, M., Gaddam, V., Challapali, K.: First cognitive radio networking standard for personal/portable devices in TV white spaces. In: IEEE Symposium on New Frontiers in Dynamic Spectrum (DySPAN). IEEE (2010). https://doi.org/10.1109/dyspan.2010.5457855

  50. Wang, L.C., Wang, C.W., Adachi, F.: Load-balancing spectrum decision for cognitive radio networks. IEEE Journal on Selected Areas in Communications 29(4), 757–769 (2011). https://doi.org/10.1109/jsac.2011.110408

  51. Wei, J., Lin, X.: The multiple attribute decision-making vikor method and its application. In: IEEE International Conference on Wireless Communications, Networking and Mobile Computing (WiCom), pp. 1–4. IEEE (2008). https://doi.org/10.1109/WiCom.2008.2777

  52. Wenhui, Z.: Handover decision using fuzzy madm in heterogeneous networks. In: IEEE Wireless Communications and Networking Conference, (WCNC), pp. 653–658. IEEE (2004). https://doi.org/10.1109/WCNC.2004.1311263

  53. Wu, S.H., Chao, H.L., Jiang, C.T., Mo, S.R., Ko, C.H., Li, T.L., Liang, C.F., Cheng, C.C.: A conceptual model and prototype of cognitive radio cloud networks in TV white spaces. In: IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 425–430. IEEE (2012). https://doi.org/10.1109/wcncw.2012.6215536

  54. Wu, S.H., Chao, H.L., Ko, C.H., Mo, S.R., Jiang, C.T., Li, T.L., Cheng, C.C., Liang, C.F.: A cloud model and concept prototype for cognitive radio networks. IEEE Wireless Communications 19(4), 49–58 (2012). https://doi.org/10.1109/mwc.2012.6272423

  55. Xiao, K., Mao, S., Tugnait, J.K.: MAQ: A multiple model predictive congestion control scheme for cognitive radio networks. IEEE Transactions on Wireless Communications 16(4), 2614–2626 (2017). https://doi.org/10.1109/twc.2017.2669322

  56. Yang, Z., Song, Y., Wang, D.: An optimal operating frequency selection scheme in spectrum handoff for cognitive radio networks. In: International Conference on Computing, Networking and Communications (ICNC), pp. 1066–1070. IEEE (2015). https://doi.org/10.1109/iccnc.2015.7069496

  57. Yang, Y., Zhang, G.a., Ji, Y.c.: Impartial spectrum decision under interference temperature model in cognitive wireless mesh networks. In: 4th International Conference on Intelligent Networking and Collaborative Systems, pp. 566–570. IEEE (2012). https://doi.org/10.1109/incos.2012.15

  58. Zhang, R., Wang, M., Cai, L.X., Zheng, Z., Shen, X., Xie, L.L.: LTE-unlicensed: the future of spectrum aggregation for cellular networks. IEEE Wireless Communications 22(3), 150–159 (2015). https://doi.org/10.1109/mwc.2015.7143339

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafael Aguilar-Gonzalez or Victor Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aguilar-Gonzalez, R., Ramos, V. (2018). Spectrum Decision Mechanisms in Cognitive Radio Networks. In: Arya, K., Bhadoria, R., Chaudhari, N. (eds) Emerging Wireless Communication and Network Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-0396-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0396-8_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0395-1

  • Online ISBN: 978-981-13-0396-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics