Abstract
Until the 2000s, FPGAs were mostly used for prototyping of ASIC chips or small-quantity products for limited application areas. Nowadays, FPGAs are used in various applications: high-performance computing, network processing, big data processing, genomics, and high-frequency trading. This chapter picks up the most exciting applications of FPGAs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Some switch products adopt the same concept, and Bonet Switch [32] is a PCIe Gen2 off-the-shelf product.
- 3.
Message Passing Interface (MPI) is a parallelization application programming interface (API) for distributed memory-based architectures. Please refer to [33].
- 4.
The link speed is equivalent to InfiniBand 4\(\times \) QDR (32 [Gbit/s] = 4 \(\times \) 8 [Gbit/s]).
- 5.
PEACH3 project is running [34], and it supports PCI Express Gen3.
- 6.
Software-defined networking (SDN) is also known as software-defined infrastructure (SDI) or software-defined data center (SDDC).
- 7.
- 8.
The company’s name is Vereenigde Oost-Indische Compagnie, called the United East India Company in English, and was founded in 1602.
- 9.
\(\upmu \text {s}\) (microsecond): one millionth of a second.
- 10.
- 11.
ns (nanosecond): one billionth of a second.
- 12.
A bottleneck of GPU is the communication between a host PC and a GPU board through PCIe bus. See Sect. 7.2.
References
G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85 (1998)
Xilinx Staff, Celebrating 20 years of innovation. Xcell J. 48, 14–16 (2004)
Altera Corp., http://www.altera.com
Xilinx Inc., http://www.xilinx.com
Achronix Semiconductor Corp., Speedster 22i HD FPGA Platform, 2.7 edn. (June 2014). Product Brief, http://www.achronix.com/
K. Compton, S. Hauck, Totem: custom reconfigurable array generation, in IEEE Symposium on Field-Programmable Custom Computing Machines (March 2001), pp. 111–119
D.C. Cronquist, C. Fisher, M. Figueroa, P. Franklin, C. Ebeling, Architecture design of reconfigurable pipelined datapaths, in 20th Anniversary Conference on Advanced Research in VLSI (March 1999), pp. 23–40
P. Heysters, G. Smit, E. Molenkamp, A flexible and energy-efficient coarse-grained reconfigurable architecture for mobile systems. J. Supercomput. 26(3), 283–308 (2003)
C. Mei, P. Cao, Y. Zhang, B. Liu, L. Liu, Hierarchical pipeline optimization of coarse grained reconfigurable processor for multimedia applications, in IEEE International Parallel Distributed Processing Symposium Workshops (May 2014), pp. 281–286
T. Miyamori, K. Olukotun, REMARC: reconfigurable multimedia array coprocessor. IEICE Trans. Inf. Syst. E82-D(2), 389–397 (1999)
H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, R.R. Taylor, Piperench: a virtualized programmable datapath in 0.18 micron technology, in IEEE Custom Integrated Circuits Conference (May 2002), pp. 63–66
B. Mei, S. Vernalde, D. Verkest, H.D. Man, R. Lauwereins, ADRES: An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix (Springer, Berlin, Heidelberg, 2003), pp. 61–70
M. Motomura, STP engine, a C-based programmable HW core featuring massively parallel and reconfigurable PE array: its architecture, tool, and system implications, in Proceedings of Cool Chips XII (2009), pp. 395–408
T. Sugawara, K. Ide, T. Sato, Dynamically reconfigurable processor implemented with IPFlex’s DAPDNA technology. IEICE Trans. Inf. Syst. E87-D(8), 1997–2003 (2004)
S.M.A.H. Jafri, S.J. Piestrak, K. Paul, A. Hemani, J. Plosila, H. Tenhunen, Energy-aware fault-tolerant CGRAs addressing application with different reliability needs, in Euromicro Conference on Digital System Design (September 2013), pp. 525–534
K. Kinoshita, Y. Yamaguchi, D. Takano, T. Okamura, T. Yao, Energy efficiency improvement by dynamic reconfiguration for embedded systems. IEICE Trans. Inf. Syst. E98-D(2), 220–229 (2015)
Japan Exchange Group, New, Enhanced TSE arrowhead cash equity trading system—for a safer, more convenient market (September 2015). News Release, http://www.jpx.co.jp/english/corporate/news-releases/0060/20150924-01.html
NASA Electronic Parts and Packaging, Military and aerospace FPGA and applications (MAFA) meeting (November 2007), https://nepp.nasa.gov/mafa/
Audi selects Altera SoC FPGA for production vehicles with ‘piloted driving’ capability (January 2015). Intel News Release, https://newsroom.intel.com/news-releases/audi-selects-altera-soc-fpga-production-vehicles-piloted-driving-capability/
T. Tanamoto, H. Sugiyama, T. Inokuchi, T. Marukame, M. Ishikawa, K. Ikegami, Y. Saito, Scalability of spin field programmable gate array: a reconfigurable architecture based on spin metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 109(7), 1–4 (2011), 07C312
S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, M. Aono, A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J. Solid-State Circuits 40(1), 168–176 (2005)
Markets and Markets, FPGA Market by Architecture (Sram, Fuse, Anti-Fuse), Configuration (High End, Mid-Range, Low End), Application (Telecommunication, Consumer Electronics, Automotive, Industrial, Military and Aerospace, Medical, Computing and Data Centers), and Geography—Trends and Forecasts From 2014–2020 (January 2015)
Top500—performance development (November 2015), http://www.top500.org/statistics/perfdevel/
Green500, http://www.green500.org
Y. Ajima, T. Inoue, S. Hiramoto, S. Uno, S. Sumimoto, K. Miura, N. Shida, T. Kawashima, T. Okamoto, O. Moriyama, Y. Ikeda, T. Tabata, T. Yoshikawa, K. Seki, T. Shimizu, Tofu Interconnect 2: System-on-Chip Integration of High-Performance Interconnect (Springer International Publishing, 2014). pp. 498–507
HA-PACS project, https://www.ccs.tsukuba.ac.jp/research/research_promotion/project/ha-pacs
NVIDIA GPUDirect, https://developer.nvidia.com/gpudirect
NVIDIA Corporation, NVIDIA NVlink high-speed interconnect: application performance. Technical report, NVIDIA Corporation (November 2014), whitepaper
J. Kim, Y. Kim, HBM: Memory solution for bandwidth-hungry processors, in Hot Chips: A Symposium on High Performance Chips (August 2014), HC26.11-310
T. Hanawa, T. Boku, S. Miura, M. Sato, K. Arimoto, PEARL: power-aware, dependable, and high-performance communication link using PCI express, in Proceedings of IEEE/ACM International Conference on Green Computing and Communications and IEEE/ACM International Conference on Cyber, Physical and Social Computing (December 2010), pp. 284–291
Y. Kodama, T. Hanawa, T. Boku, M. Sato, PEACH2: an FPGA-based PCIe network device for tightly coupled accelerators. ACM SIGARCH Comput. Archit. News 42(4), 3–8 (2014)
AKIB Networks, INC, Bonet switch, http://www.akibnetworks.com/product2.html
P.S. Pacheco, Parallel Programming with MPI (Morgan Kaufmann, 1996)
T. Kuhara, T. Kaneda, T. Hanawa, Y. Kodama, T. Boku, H. Amano, A preliminarily evaluation of PEACH3: a switching hub for tightly coupled accelerators, in Proceedings of International Symposium on Computing and Networking (December 2014), pp. 377–381
MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RDMA over Converged Ethernet
K. Matsumoto, T. Hanaway, Y. Kodama, H. Fujiiz, T. Boku, Implementation of CG method on GPU cluster with proprietary interconnect TCA for GPU direct communication, in Proceedings of Accelerators and Hybrid Exascale Systems in Conjunction with IEEE International Parallel & Distributed Processing Symposium (May 2015), pp. 647–655
F. Cerqueira, B.B. Brandenburg, A comparison of scheduling latency in Linux, PREEMPT-RT, and LITMUS-RT (July 2013)
EXABLAZE, EXALINKFUSION (September 2015), product brochure
Xilinx: 7 Series FPGAs Overview (DS890), 2.2 edn. (August 2015), preliminary Product Specification
Xilinx: UltraScale Architecture and Product Overview, 2.6 edn. (December 2015), product Specification (DS890)
ARISTA: 7124FX Application Switch (April 2014), datasheet
CISCO: Cisco Nexus 7000 Series FPGA/EPLD Upgrade, release 4.1 edn. (April 2009), Release Notes
MELLANOX: Programmable ConnectX-3 Pro Adapter Card, rev 1.0 edn. (November 2014), product Brief 15-4369PB
Simplex Inc., Equities Solution SimplexBLAST (January 2014), http://www.simplex.ne.jp/en/
S. Scott-Hayward, S. Natarajan, S. Sezer, A survey of security in software defined networks. IEEE Commun. Surv. Tutor. 17(4), 2317–2346 (2015)
N. Mihai, G. Vanecek, New generation of control planes in emerging data networks, in Proceedings of First International Working Conference, vol. 1653 (1999), pp. 144–154
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner, Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)
Open networking foundation (2011), https://www.opennetworking.org/
SDNet development environment, http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
Arrive technologies, http://www.arrivetechnologies.com/
A. Bitar, M. Abdelfattah, V. Betz, Bringing programmability to the data plane: packet processing with a NoC-enhanced FPGA, in Proceedings of International Conference on Field-Programmable Technology (2015), pp. 1–8
K. Guerra-Perez, S. Scott-Hayward, OpenFlow multi-table lookup architecture for multi-gigabit software defined networking (SDN), in Proceedings of ACM SIGCOMM Symposium on Software Defined Networking Research (2015), pp. 1–2
W. Jiang, V.K. Prasanna, N. Yamagaki, Decision forest: a scalable architecture for flexible flow matching on FPGA, in Proceedings of International Conference on Field Programmable Logic and Applications (2010), pp. 394–399
H. Nakahara, T. Sasao, M. Matsuura, A packet classifier using LUT cascades based on EVMDDS (k), in Proceedings of International Conference on Field Programmable Logic and Applications (September 2013), pp. 1–6
J. Naous, D. Erickson, G.A. Covington, G. Appenzeller, N. McKeown, Implementing an Openflow switch on the NetFPGA platform, in Proceedings of ACM/IEEE Symposium on Architectures for Networking and Communications Systems (2008), pp. 1–9
S. Pontarelli, M. Bonola, G. Bianchi, A. Caponey, C. Cascone, Stateful openflow: hardware proof of concept, in Proceedings of International Conference on High Performance Switching and Routing (2015), pp. 1–8
Y.R. Qu, H.H. Zhang, S. Zhou, V.K. Prasanna, Optimizing many-field packet classification on FPGA, multi-core general purpose processor, and GPU, in Proceedings of ACM/IEEE Symposium on Architectures for Networking and Communications Systems (2015), pp. 87–98
P. Gupta, N. McKeown, Algorithms for packet classification. IEEE Netw. Mag. Global Internetwork. 15(2), 24–32 (2001)
Toshiba develops NPEngineTM, the world’s first hardware engine that directly streams video content from SSD to IP networks (April 2012). Toshiba Press Release, https://www.toshiba.co.jp/about/press/2012_04/pr0901.htm
P. Gupta, Xeon+FPGA platform for the data center, in Fourth Workshop on the Intersections of Computer Architecture and Reconfigurable Logic in Conjunction with International Symposium on Computer Architecture, http://www.ece.cmu.edu/calcm/carl/
Altera: Hybrid Memory Cube Controller IP Core (May 2016), user Guide (UG-01152)
Xilinx: The Rise of Serial Memory and the Future of DDR, 1.1 edn. (March 2015), white Paper (WP456)
Hybrid Memory Cube Consortium, http://www.hybridmemorycube.org/
B. Yang, R. Karri, An 80Gbps FPGA implementation of a universal hash function based message authentication code, in The DAC/ISSCC Student Design Contest (2004) pp. 1–7, Operational Category: 3rd Place Winner
Y. Qu, V.K. Prasanna, High-performance pipelined architecture for tree-based IP lookup engine on FPGA, in Proceedings of IEEE International Parallel and Distributed Processing Symposium, Workshops and Ph.D. Forum, Reconfigurable Architectures Workshop (May 2013), pp. 114–123
K.E. Grosspietsch, Associative processors and memories: a survey. Micro, IEEE 12(3), 12–19 (1992)
T. Kohonen, Associative Memory (Springer, 1977)
Altera Staff, Designing switches & routers with APEX CAM. White Paper M-WP-APEXCAM-02, Altera Corporation (October 2000)
Xilinx Staff, Content Addressable Memory (CAM) in ATM Applications. Application Note XAPP202 (v1.2), Xilinx Inc. (January 2001)
S.A. Guccione, D. Levi, D. Downs, A reconfigurable content addressable memory, in Proceedings of IPDPS Workshops on Parallel and Distributed Processing (2000), pp. 882–889
TCAMs and BCAMs: Ternary and Binary Content-Addressable Memory Compilers, https://www.esilicon.com/services-products/products/custom-memory-ip-and-ios/specialty-memories/tcam-and-bcam-compilers/
80 Mbit Dual-Port Interlaken-LA TCAMs Achieve 2BSPS Deterministic Lookups, https://www.renesas.com/ja-jp/media/products/memory/network-search-engine/r10cp0002eu0000_tcam.pdf
Network Search Engine, R8A20686BG-G
W. Jiang, K. Viktor, Prasanna, A FPGA-based parallel architecture for scalable high-speed packet classification, in Proceedings of IEEE International Conference on Application-specific Systems, Architectures and Processors (July 2009), pp. 24–31
D. Burger, Transitioning from the era of multicore to the era of specialization, in Keynote Speech at SICS Multicore Day (2015), https://www.sics.se/sites/default/files/pub/sics.se/doug_burger_catapult_-_sics.pdf
A. Putnam, A.M. Caulfield, E.S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G.P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J.Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P.Y. Xiao, D. Burger, A Reconfigurable fabric for accelerating large-scale datacenter services, in Procceedings of the ACM/IEEE International Symposium on Computer Architecture (ISCA) (June 2014), pp. 13–24
A. Putnam, A. Caulfield, E. Chung, et al., Large-scale reconfigurable computing in a Microsoft datacenter, in Proceedings of Hot Chips 26 (August 2014)
D.A. Buell, J.M. Arnold, W.J. Kleinfelder, Splash 2: FPGAs in a Custom Computing Machine. (Wiley-IEEE Computer Society Press, 1996)
B.S.C. Varma, K. Paul, M. Balakrishnan, D. Lavenier, FAssem: FPGA based acceleration of de novo genome assembly, in Proceeding of the Annual International IEEE Symposium on Field-Programmable Custom Computing Machines (April 2013), pp. 173–176
D.R. Zerbino, E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18(5), 821–829 (2008)
B. Langmead, C. Trapnell, M. Pop, S.L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10(3), R25 (2009)
H. Li, R. Durbin, Fast and accurate short read alignment with burrowswheeler transform. Bioinformatics 25(14), 1754–1760 (2009)
H.M. Waidyasooriya, M. Hariyama, Hardware-acceleration of short-read alignment based on the burrows-wheeler transform. IEEE Trans. Parallel Distrib. Syst. 1–8 (2015), http://www.computer.org/csdl/trans/td/preprint/07122348-abs.html
London Stock Exchange Group, Turquoise derivatives: FTSE 100 Index Futures (June 2013). Factsheet, https://www.lseg.com/sites/default/files/content/documents/LSEG_FTSE_100_Futures_Factsheet.pdf
London Stock Exchange Group, Turquoise derivatives: FTSE 100 Index Options (June 2013). Factsheet, https://www.lseg.com/sites/default/files/content/documents/LSEG_FTSE_100_Options_Factsheet.pdf
Singapore Exchange, SGX invests $250 million to offer fastest access to Asia (June 2010). News Release, http://investorrelations.sgx.com/releasedetail.cfm?releaseid=590607
The New York Stock Exchange, NYSE MKT transition to NYSE American (March 2017), https://www.nyse.com/publicdocs/nyse/markets/nyse-american/Pillar_Update_NYSE_American_March_2017.pdf
M. Lewis, Flash Boys: A Wall Street Revolt (W. W. Norton & Company Inc., 2014)
R. Cont, Statistical modeling of high-frequency financial data. IEEE Signal Process. Mag. 28(5), 16–25 (2011)
Viraf Reporter, The value of a millisecond: finding the optimal speed of a trading infrastructure. Technical report, TABB Group (April 2008), https://community.rti.com/sites/default/files/archive/V06-007_Value_of_a_Millisecond.pdf
G. Linden, Make data useful. CS345, Stanford University (December 2006), first version
jcl, Hacking a HFT system. The Financial Hacker (July 2017). The Financial Hacker: a new view on algorithmic trading, http://www.financial-hacker.com/hacking-hft-systems/
M. O’Hara, FPGA and hardware accelerated trading, part five the view from Intel (August 2012). The Trading Mesh, http://www.thetradingmesh.com/pg/blog/mike/read/60770/fpga-hardware-accelerated-trading-part-five-the-view-from-intel
E.M. Murphy, Order instituting administrative and cease-and-desist proceedings, pursuant to sections 15(b) and 21c of the securities exchange act of 1934, making findings, and imposing remedial sanctions and a cease-and-desist order. The Securities and Exchange Commission, https://www.sec.gov/litigation/admin/2013/34-70694.pdf (October 2013), release #70694, File #3-15570
T. Makimoto, Implications of Makimoto’s wave. Computer 46(12), 32–37 (2013)
C. Leber, B. Geib, H. Litz, High frequency trading acceleration using FPGAs, in International Conference on Field Programmable Logic and Applications (September 2011), pp. 317–322
M. Dvořák, J. Kořenek, Low latency book handling in FPGA for high frequency trading, in International Symposium on Design and Diagnostics of Electronic Circuits Systems (April 2014), pp. 175–178
J.W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English, K. Vissers, A low-latency library in FPGA hardware for high-frequency trading (HFT), in IEEE Annual Symposium on High-Performance Interconnects (August 2012), pp. 9–16
J.W. Lockwood, A. Gupte, N. Meh, M. Blott, T. English, K. Visser, A low-latency library in FPGA hardware for high-frequency trading (HFT), in Proceedings of IEEE 20th Annual Symposium on High-Performance Interconnects (August 2012), pp. 9–16
OpenCL running on FPGAs accelerates Monte Carlo analysis of Black-Scholes financial market model by 10x, https://forums.xilinx.com/t5/Xcell-Daily-Blog/OpenCL-running-on-FPGAs-accelerates-Monte-Carlo-analysis-of/ba-p/435490
Altera Staff, Implementing FPGA design with the OpenCL standard. White Paper WP-01173-3.0, Altera Corporation (November 2013)
D.B. Thomas, Acceleration of financial Monte-Carlo simulations using FPGAs, in IEEE Workshop on High Performance Computational Finance (November 2010), pp. 1–6
M. O’Hara, Accelerating transactions through FPGA-enabled switching: an interview with John Peach of Arista networks. HFT Review Ltd. (June 2012)
T. Yanagisawa, H. Kurosaki, A. Nakajima, Activities of JAXA’s innovative technology center on space debris observation, in Advanced Maui Optical and Space Surveillance Technologies Conference (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Maruyama, T., Yamaguchi, Y., Osana, Y. (2018). Programmable Logic Devices (PLDs) in Practical Applications. In: Amano, H. (eds) Principles and Structures of FPGAs. Springer, Singapore. https://doi.org/10.1007/978-981-13-0824-6_7
Download citation
DOI: https://doi.org/10.1007/978-981-13-0824-6_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-0823-9
Online ISBN: 978-981-13-0824-6
eBook Packages: Computer ScienceComputer Science (R0)