Abstract
Classification of hyperspectral images (HSI) can benefit from deep learning models with deep architecture in remote sensing. In this letter, a novel method based on Convolutional Neural Network (CNN) is proposed for the classification of hyperspectral images. Due to using more spatio-spectral features for the classification of hyperspectral images, the proposed method outperforms the existing state-of-the-art classification techniques. Our proposed method first reduces the dimension of hyperspectral images using Principle component analysis (PCA). The spatial and spectral features are then exploited by a fixed size convolutional filter to generate the combine spatio-spectral feature maps. Finally, these feature maps are fed into a Multi-Layer Perceptron (MLP) classifier that predicts the class of the pixel vector. To validate the effectiveness of our proposed method, computer simulations are conducted using three datasets namely Indian Pines, Salinas and Pavia University and comparisons with existing techniques are made.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Falco, N., Bruzzone, L., Benediktsson, J.A.: A comparative study of different ICA algorithms for hyperspectral image analysis. In: 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4 (2013)
Zhao, L.Y., Zou, D., Gao, G.: Subsampling based neighborhood preserving embedding for image classification. In: Proceedings - 2013 9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2013, pp. 358–360 (2013)
Yuan, H., Tang, Y.Y., Lu, Y., Yang, L., Luo, H.: Spectral-spatial classification of hyperspectral image based on discriminant analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 2035–2043 (2014)
Gangodagamage, C., Foufoula-Georgiou, E., Brumby, S.P., Chartrand, R., Koltunov, A., Liu, D., Cai, M., Ustin, S.L.: Wavelet-compressed representation of landscapes for hydrologic and geomorphologic applications. IEEE Geosci. Remote Sens. Lett. 13, 480–484 (2016)
Yu, H., Gao, L., Liao, W., Zhang, B., Pizurica, A., Philips, W.: Multiscale superpixel-level subspace-based support vector machines for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 14, 2142–2146 (2017)
Chen, Y., Zhao, X., Jia, X.: Spectral-Spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 2381–2392 (2015)
Salakhutdinov, R., Hinton, G.: Deep boltzmann machines. In: AISTATS, pp. 448–455 (2009)
Vincent, P., Larochelle, H.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion Pierre-Antoine manzagol. J. Mach. Learn. Res. 11, 3371–3408 (2010)
Yu, S., Jia, S., Xu, C.: Convolutional neural networks for hyperspectral image classification. Neurocomputing 219, 88–98 (2017)
Lin, Z., Chen, Y., Zhao, X., Wang, G.: Spectral-spatial classification of hyperspectral image using autoencoders. In: 2013 9th International Conference Information, Communication Signal Process, pp. 1–5 (2013)
Lee, H., Kwon, H.: Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 26, 4843–4855 (2017)
Jablonski, J.A.: Reconstruction error and principal component based anomaly detection in hyperspectral imagery. Master thesis, Air Force Institute of Technology, USA (2014)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on International Conference on Machine Learning, pp. 448–456 (2015)
Raschka, S.: Michigan State Uni., USA. https://www.kdnuggets.com/2016/07/softmax-regression-related-logistic-regression.html
Hyperspectral remote sensing scenes. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X., Brain, G.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–284 (2016)
Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 1–12 (2015)
Zhong, P., Gong, Z., Li, S., Schonlieb, C.-B.: Learning to diversify deep belief networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55, 3516–3530 (2017)
Brownlee J.: Deep Learning with Python: Develop Deep Learning Models on Theano and TensorFlow Using Keras, 1.7th edn. Machine Learning Mastery, Melbourne (2016)
Acknowledgments
This work is sponsored by the National Natural Science Foundation of China under Grant No. 61373063 and 61373062; the project of Ministry of Industry and Information Technology of China (Grant No. E0310/1112/02-1).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Iltaf, A., Ullah, M., Shen, J., Wu, Z., Liu, C., Ahmad, Z. (2018). Digging More in Neural World: An Efficient Approach for Hyperspectral Image Classification Using Convolutional Neural Network. In: Yuan, H., Geng, J., Liu, C., Bian, F., Surapunt, T. (eds) Geo-Spatial Knowledge and Intelligence. GSKI 2017. Communications in Computer and Information Science, vol 849. Springer, Singapore. https://doi.org/10.1007/978-981-13-0896-3_12
Download citation
DOI: https://doi.org/10.1007/978-981-13-0896-3_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-0895-6
Online ISBN: 978-981-13-0896-3
eBook Packages: Computer ScienceComputer Science (R0)