Abstract
Anonymity refers to withholding the identification information associated with an interaction. In the cyberworld, anonymous authentication is an important tool for protecting privacy. However, users may misbehave under the cover of anonymity, thus, accountability is crucial in any practical privacy-preserving authentication. Balancing anonymity and accountability has always been a challenging research problem in privacy protection. Accountable anonymous credentials are the cryptographic schemes designed to address this challenge. Users are allowed to anonymously prove their possession of valid credentials to protect user privacy. If they misbehave, they will be de-anonymized or blacklisted. In other words, it is technically possible for a system to achieve both anonymity and accountability simultaneously. In this chapter, we review the concept of anonymous credentials and discuss various accountability mechanisms. We discuss how the recent development of blockchain and quantum computers have influenced the recent research advances in this area. Finally, we also discuss how anonymous credentials are applied in real-world applications in cryptocurrencies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A user Alice with address \(A_1\), \(A_2\) and \(A_3\) could create money out of nothing by making a transaction that receives $0 from address \(A_1\) and sends $\(-1\) to address \(A_2\) and $1 to address \(A_3\).
References
Anthony, D., Smith, S. W., & Williamson, T. (2007). The Quality of Open Source Production: Zealots and Good Samaritans in the Case of Wikipedia. Technical Report TR2007-606, Dartmouth College, Computer Science, Hanover, NH, September 2007.
Au, M. H., Chow, S. S. M., Susilo, W., & Tsang, P. P. (2006). Short linkable ring signatures revisited. In European Public Key Infrastructure Workshop (Vol. 4043, pp. 101–115). Berlin: Springer.
Au, M. H., & Kapadia, A. (2012). Perm: Practical reputation-based blacklisting without ttps. In Proceedings of the 2012 ACM Conference on Computer and Communications Security (pp. 929–940). ACM.
Au, M. H., Kapadia, A., Susilo, W., & Au, M. H. (2012). Blacr: Ttp-free blacklistable anonymous credentials with reputation. In NDSS.
Bellare, M., Micciancio, D., & Warinschi, B. (2003). Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In Eurocrypt (Vol. 2656, pp. 614–629). Berlin: Springer.
Bellare, M., Shi, H., & Zhang, C. (2005). Foundations of group signatures: The case of dynamic groups. In Cryptographers’ Track at the RSA Conference (pp. 136–153). Berlin: Springer.
Bender, A., Katz, J., & Morselli, R. (2006). Ring signatures: Stronger definitions, and constructions without random oracles. In TCC (Vol. 6, pp. 60–79). Berlin: Springer.
Blazy, O., & Pointcheval, D. (2012). Traceable signature with stepping capabilities. In Cryptography and Security (pp. 108–131). Berlin: Springer.
Boneh, D., Boyen, X., & Shacham, H. (2004). Short group signatures. In Crypto (Vol. 3152, pp. 41–55). Berlin: Springer.
Boneh, D., Gentry, C., Lynn, B., & Shacham, H. (2003). Aggregate and verifiably encrypted signatures from bilinear maps. In Eurocrypt (Vol. 2656, pp. 416–432). Berlin: Springer.
Boneh, D., & Shacham, H. (2004). Group signatures with verifier-local revocation. In Proceedings of the 11th ACM Conference on Computer and Communications Security (pp. 168–177). ACM.
Brakerski. Z., & Kalai, Y. T. (2010). A framework for efficient signatures, ring signatures and identity based encryption in the standard model. IACR Cryptology ePrint Archive, 2010, 86.
Brands, S. A. (2000). Rethinking public key infrastructures and digital certificates: building in privacy. Mit Press.
Bresson, E., Stern, J., & Szydlo, M. (2002). Threshold ring signatures and applications to ad-hoc groups. In Annual International Cryptology Conference (pp. 465–480). Berlin: Springer.
Brickell, E., & Li, J. (2007). Enhanced privacy id: A direct anonymous attestation scheme with enhanced revocation capabilities. In Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society (pp. 21–30). ACM.
Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., & Meyerovich, M. (2006). How to win the clonewars: efficient periodic n-times anonymous authentication. In Proceedings of the 13th ACM Conference on Computer and Communications Security (pp. 201–210). ACM.
Camenisch, J., Hohenberger, S., & Lysyanskaya, A. (2005). Compact e-cash. In Eurocrypt (Vol. 3494, pp. 302–321). Berlin: Springer.
Camenisch, J., & Lysyanskaya, A. (2001). An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In B. Pfitzmann (Ed.), Advances in Cryptology - EUROCRYPT 2001, International Conference on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria, May 6–10, 2001, Proceeding (Vol. 2045, pp. 93–118)., Lecture notes in computer science Berlin: Springer.
Camenisch, J., & Lysyanskaya, A. (2001). An efficient system for non-transferable anonymous credentials with optional anonymity revocation. Advances in Cryptology-EUROCRYPT, 2001, 93–118.
Camenisch, J., & Lysyanskaya, A. (2002). Dynamic accumulators and application to efficient revocation of anonymous credentials. In Crypto (Vol. 2442, pp. 61–76). Berlin: Springer.
Camenisch, J., & Lysyanskaya, A. (2002). A signature scheme with efficient protocols. In International Conference on Security in Communication Networks (pp. 268–289). Berlin: Springer.
Camenisch, J., & Lysyanskaya, A. (2004). Signature schemes and anonymous credentials from bilinear maps. In Annual International Cryptology Conference (pp. 56–72). Berlin: Springer.
Camenisch, J., Neven, G., & Rückert, M. (2012). Fully anonymous attribute tokens from lattices. In SCN (pp. 57–75). Berlin: Springer.
Canard, S., & Gouget, A. (2007). Divisible e-cash systems can be truly anonymous. In Eurocrypt (Vol. 4515, pp. 482–497). Berlin: Springer.
Chaum, D. (1983). Blind signatures for untraceable payments. In Advances in Cryptology (pp. 199–203). Berlin: Springer.
Chaum, D. (1985). Security without identification: Transaction systems to make big brother obsolete. Communications of the ACM, 28(10), 1030–1044.
Chaum, D. (1989). Online cash checks. In Workshop on the Theory and Application of of Cryptographic Techniques (pp. 288–293). Berlin: Springer.
Chaum, D., & Evertse, J. -H. (1986). A secure and privacy-protecting protocol for transmitting personal information between organizations. In Crypto (Vol. 86, pp. 118–167). Berlin: Springer.
Chaum, D., Fiat, A., & Naor, M. (1990). Untraceable electronic cash. In Proceedings on Advances in Cryptology (pp. 319–327). New York, Inc.: Springer.
Chaum, D., & Van Heyst, E. (1991). Group signatures. In Advances in Cryptology? EUROCRYPT? 91 (pp. 257–265). Berlin: Springer.
Choi, S. G., Park, K., & Yung, M. (2006). Short traceable signatures based on bilinear pairings. In IWSEC (Vol. 6, pp. 88–103).
Chow, S. S. M., Wei, V. K., Liu, J. K., & Hon Yuen, Tsz. (2006). Ring signatures without random oracles. In Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security (pp. 297–302). ACM.
Damgård, I. B. (1990). Payment systems and credential mechanisms with provable security against abuse by individuals. In Proceedings on Advances in Cryptology (pp. 328–335). New York, Inc.: Springer.
Delerablée, C., & Pointcheval, D. (2006). Dynamic fully anonymous short group signatures. Vietcrypt, 4341, 193–210.
Dodis, Y., Kiayias, A., Nicolosi, A., & Shoup, V. (2004). Anonymous identification in ad hoc groups. In Eurocrypt (Vol. 3027, pp. 609–626). Berlin: Springer.
Fujisaki, E., & Suzuki, K. (2007). Traceable ring signature. In Public Key Cryptography (Vol. 4450, pp. 181–200). Berlin: Springer.
Garman, C., Green, M., & Miers, I. (2014). Decentralized anonymous credentials. In NDSS.
Ge, H., & Tate, S. R. (2006). Traceable signature: better efficiency and beyond. In International Conference on Computational Science and Its Applications (pp. 327–337). Berlin: Springer.
Gordon, S. D., Katz, J., & Vaikuntanathan, V. (2010). A group signature scheme from lattice assumptions. In ASIACRYPT (pp. 395–412). Berlin: Springer.
Groth, J. (2007). Fully anonymous group signatures without random oracles. Advances in Cryptology-ASIACRYPT, 2007, 164–180.
Groth, J., & Kohlweiss, M. (2015). One-out-of-many proofs: Or how to leak a secret and spend a coin. In Annual International Conference on the Theory and Applications of Cryptographic Techniques (pp. 253–280). Berlin: Springer.
Khattak, S., Fifield, D., Afroz, S., Javed, M., Sundaresan, S., McCoy, D., Paxson, V., & Murdoch, S. J. (2016). Do you see what I see? differential treatment of anonymous users. In 23nd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, California, USA, February 21–24 2016. The Internet Society.
Kiayias, A., Tsiounis, Y., & Yung, M. (2004). Traceable signatures. In Eurocrypt (Vol. 3027, pp. 571–589). Berlin: Springer.
Koshy, P., Koshy, D., & McDaniel, P. (2014). An analysis of anonymity in bitcoin using p2p network traffic. In International Conference on Financial Cryptography and Data Security (pp. 469–485). Berlin: Springer.
Kumar, A., Fischer, C., Tople, S., & Saxena, P. (2017). A traceability analysis of monero’s blockchain. IACR Cryptology ePrint Archive, 2017, 338.
Laguillaumie, F., Langlois, A., Libert, B., & Stehlé, D. (2013). Lattice-based group signatures with logarithmic signature size. In ASIACRYPT (pp. 41–61). Berlin: Springer.
Langlois, A., Ling, S., Nguyen, K., & Wang, H. (2014). Lattice-based group signature scheme with verifier-local revocation. In PKC (pp. 345–361). Berlin: Springer.
Libert, B., Ling, S., Mouhartem, F., Nguyen, K., & Wang, H. (2016). Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In ASIACRYPT (pp. 373–403). Berlin: Springer.
Libert, B., Ling, S., Nguyen, K., & Wang, H. (2016). Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In EUROCRYPT (pp. 1–31). Berlin: Springer.
Libert, B., Ling, S., Nguyen, K., & Wang, H. (2017). Zero-knowledge arguments for lattice-based prfs and applications to e-cash. In International Conference on the Theory and Application of Cryptology and Information Security (pp. 304–335). Berlin: Springer.
Libert, B., Mouhartem, F., & Nguyen, K. (2016). A lattice-based group signature scheme with message-dependent opening. In ACNS (pp. 137–155). Berlin: Springer.
Libert, B., & Yung, M. (2009). Efficient traceable signatures in the standard model. Pairing-Based Cryptography-Pairing, 2009, 187–205.
Andrew, Y. (2016). Lindell. Anonymous authentication, Online Database.
Ling, S., Nguyen, K., & Wang, H. (2015). Group signatures from lattices: simpler, tighter, shorter, ring-based. In PKC (pp. 427–449). Berlin: Springer.
Ling, S., Nguyen, K., Wang, H., & Xu, Y. (2017). Lattice-based group signatures: Achieving full dynamicity with ease. Cryptology ePrint Archive, Report 2017/353. http://eprint.iacr.org/2017/353.
Ling, S., Nguyen, K., Wang, H., & Xu, Y. (2018). Constant-size group signatures from lattices. In IACR International Workshop on Public Key Cryptography (pp. 58–88). Berlin: Springer.
Liu, J. K., Au, M. H., Susilo, W., & Zhou, J. (2014). Linkable ring signature with unconditional anonymity. IEEE Transactions on Knowledge and Data Engineering, 26(1), 157–165.
Liu, J. K., Wei, V. K., & Wong, D. S. (2004). Linkable spontaneous anonymous group signature for ad hoc groups. In ACISP (Vol. 4, pp. 325–335). Berlin: Springer.
Liu, J. K., & Wong, D. S. (2005). Linkable ring signatures: Security models and new schemes. In International Conference on Computational Science and Its Applications (pp. 614–623). Berlin: Springer.
Lysyanskaya, A., Rivest, R. L., Sahai, A., & Wolf, S. (1999). Pseudonym systems. In Selected Areas in Cryptography (Vol. 1758, pp. 184–199). Berlin: Springer.
Miers, I., Garman, C., Green, M., & Rubin, A. D. (2013). Zerocoin: Anonymous distributed e-cash from bitcoin. In 2013 IEEE Symposium on Security and Privacy (SP) (pp. 397–411). IEEE.
Miller, A., Möser, M., Lee, K., & Narayanan, A. (2017). An empirical analysis of linkability in the monero blockchain. arXiv preprint. arXiv:1704.04299.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
Naor, M. (2002). Deniable ring authentication. In Crypto (Vol. 2, pp. 481–498). Berlin: Springer.
Narayanan, A., & Shmatikov, V. (2008). Robust de-anonymization of large sparse datasets. In 2008 IEEE Symposium on Security and Privacy (S&P 2008), May 18–21 2008, Oakland, California, USA (pp. 111–125). IEEE Computer Society.
Nguyen, L., & Safavi-Naini, R. (2004). Efficient and provably secure trapdoor-free group signature schemes from bilinear pairings. In International Conference on the Theory and Application of Cryptology and Information Security (pp. 372–386). Berlin: Springer.
Nguyen, L., & Safavi-Naini, R. (2005). Dynamic k-times anonymous authentication. In ACNS (Vol. 3531, pp. 318–333). Berlin: Springer.
Nguyen, P. Q., Zhang, J., & Zhang, Z. (2015). Simpler efficient group signatures from lattices. In PKC (pp. 401–426). Berlin: Springer.
Noether, S., & Mackenzie, A. (2016). Ring confidential transactions. Ledger, 1, 1–18.
The Tor Project. List of irc/chat networks that block or support tor. Accessed on 6 Jan 2018.
Rivest, R., Shamir, A., & Tauman, Y. (2001). How to leak a secret. Advances inCryptology?ASIACRYPT 2001 (pp. 552–565).
Sasson, E. B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., & Virza, M. (2014). Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy (SP) (pp. 459–474). IEEE.
Schäge, S., & Schwenk, J. (2010). A cdh-based ring signature scheme with short signatures and public keys. In Financial Cryptography (Vol. 6052, pp. 129–142). Berlin: Springer.
Shacham, H., & Waters, B. (2007). Efficient ring signatures without random oracles. In Public Key Cryptography (Vol. 4450, pp. 166–180). Berlin: Springer.
Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science (pp. 124–134). IEEE.
Sun, S. -F., Au, M. H., Liu, J. K., & Yuen, T. H. (2017). Ringct 2.0: A compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency monero. In European Symposium on Research in Computer Security (pp. 456–474). Berlin: Springer.
Teranishi, I., Furukawa, J., & Sako, K. (2004). K-times anonymous authentication. In Asiacrypt (Vol. 3329, pp. 308–322). Berlin: Springer.
Tsang, P. P., Au, M. H., Kapadia, A., & Smith, S. W. (2007). Blacklistable anonymous credentials: Blocking misbehaving users without ttps. In Proceedings of the 14th ACM Conference on Computer and Communications Security (pp. 72–81). ACM.
Tsang, P. P., Au, M. H., Kapadia, A., & Smith, S. W. (2008). Perea: Towards practical ttp-free revocation in anonymous authentication. In Proceedings of the 15th ACM Conference on Computer and Communications Security (pp. 333–344). ACM.
Tsang, P. P., & Wei, V. K. (2005). Short linkable ring signatures for e-voting, e-cash and attestation. In ISPEC (Vol. 3439, pp. 48–60). Berlin: Springer.
Tsang, P. P, Wei, V. K., Chan, T. K., Au, M. H., Liu, J. K., & Wong, D. S. (2004). Separable linkable threshold ring signatures. In Indocrypt (Vol. 3348, pp. 384–398). Berlin: Springer.
van Saberhagen, N. (2013). Cryptonote v 2. 0.
Yang, R., Au, M. H., Lai, J., Xu, Q., & Yu, Z. (2017). Lattice-based techniques for accountable anonymity: Composition of abstract sterns protocols and weak prf with efficient protocols from lwr. Cryptology ePrint Archive, Report 2017/781. https://eprint.iacr.org/2017/781.
Yang, R., Au, M. H., Xu, Q., & Yu, Z. (2017). Decentralized blacklistable anonymous credentials with reputation. In IACR Cryptology ePrint Archive (Vol. 2017, p. 389).
Zhang, H., Zhang, F., Tian, H., & Au, M. H. (2018). Anonymous post-quantum cryptocash. In FC.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Yu, Z., Au, M.H., Yang, R. (2019). Accountable Anonymous Credentials. In: Li, KC., Chen, X., Susilo, W. (eds) Advances in Cyber Security: Principles, Techniques, and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-1483-4_3
Download citation
DOI: https://doi.org/10.1007/978-981-13-1483-4_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-1482-7
Online ISBN: 978-981-13-1483-4
eBook Packages: Computer ScienceComputer Science (R0)