Skip to main content

Estimation of Interfacial Heat Transfer Coefficient for Horizontal Directional Solidification of Sn-5 wt%Pb Alloy Using Genetic Algorithm as Inverse Method

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 816))

Abstract

In the present work, a one-dimensional transient solidification heat transfer problem is solved to determine the unknown interfacial heat transfer coefficient (IHTC) at the mold–metal interface using genetic algorithm (GA), an evolutionary and widely known algorithm, as an inverse method. The forward model is numerically solved to obtain the exact temperatures by incorporating the appropriate correlation for the IHTC that varies with time. In order to mimic experiments, the exact temperatures are then perturbed with the standard deviations of 0.01, 0.02, and 0.03. In the inverse estimation, genetic algorithm is used to minimize the objective function, thereby reducing the error between the measured and the simulated temperatures. The study on the performance parameters of the algorithm is also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ho, K., Pehlke, R.D.: Metal-mold interfacial heat transfer. Metall. Mater. Trans. B 16(3), 585–594 (1985)

    Article  Google Scholar 

  2. Nishida, Y., Droste, W., Engler, S.: The air-gap formation process at the casting-mold interface and the heat transfer mechanism through the gap. Metall. Mater. Trans. B 17(4), 833–844 (1986)

    Article  Google Scholar 

  3. Rajaraman, R., Velraj, R.: Comparison of interfacial heat transfer coefficient estimated by two different techniques during solidification of cylindrical aluminum alloy casting. Heat Mass Transf. 44(9), 1025–1034 (2008)

    Article  Google Scholar 

  4. Meneghini, A., Tomesani, L.: Chill material and size effects on HTC evolution in sand casting of aluminum alloys. J. Mater. Process. Technol. 162, 534–539 (2005)

    Article  Google Scholar 

  5. Prabhu, K.N., Kumar, S.T., Venkataraman, N.: Heat transfer at the metal/substrate interface during solidification of Pb-Sn solder alloys. J. Mater. Eng. Perform. 11(3), 265–273 (2002)

    Article  Google Scholar 

  6. Gafur, M.A., Haque, M.N., Prabhu, K.N.: Effect of chill thickness and superheat on casting/chill interfacial heat transfer during solidification of commercially pure aluminium. J. Mater. Process. Technol. 133(3), 257–265 (2003)

    Article  Google Scholar 

  7. Hallam, C.P., Griffiths, W.D.: A model of the interfacial heat-transfer coefficient for the aluminum gravity die-casting process. Metall. mater. Trans. B 35(4), 721–733 (2004)

    Article  Google Scholar 

  8. Hamasaiid, A., Dargusch, M.S., Davidson, C.J., Tovar, S., Loulou, T., Rezai-Aria, F., Dour, G.: Effect of mold coating materials and thickness on heat transfer in permanent mold casting of aluminum alloys. Metall. Mater. Trans. A 38(6), 1303–1316 (2007)

    Article  Google Scholar 

  9. Prabhu, K.N., Chowdary, B., Venkataraman, N.: Casting/mold thermal contact heat transfer during solidification of Al-Cu-Si alloy (LM 21) plates in thick and thin molds. J. Mater. Eng. Perform. 14(5), 604–609 (2005)

    Article  Google Scholar 

  10. Santos, C.A., Siqueira, C.A., Garcia, A., Quaresma, J.M., Spim, J.A.: Metal–mold heat transfer coefficients during horizontal and vertical unsteady-state solidification of Al–Cu and Sn–Pb alloys. Inverse Problems Sci Eng. 12(3), 279–296 (2004)

    Article  Google Scholar 

  11. Silva, J.N., Moutinho, D.J., Moreira, A.L., Ferreira, I.L., Rocha, O.L.: Determination of heat transfer coefficients at metal–mold interface during horizontal unsteady-state directional solidification of Sn–Pb alloys. Mater. Chem. Phys. 130(1), 179–185 (2011)

    Article  Google Scholar 

  12. Konrad, C.H., Brunner, M., Kyrgyzbaev, K., Völkl, R., Glatzel, U.: Determination of heat transfer coefficient and ceramic mold material parameters for alloy IN738LC investment castings. J. Mater. Process. Technol. 211(2), 181–186 (2011)

    Article  Google Scholar 

  13. Dong, Y., Bu, K., Dou, Y., Zhang, D.: Determination of interfacial heat-transfer coefficient during investment-casting process of single-crystal blades. J. Mater. Process. Technol. 211(12), 2123–2131 (2011)

    Article  Google Scholar 

  14. Sun, Z., Hu, H., Niu, X.: Determination of heat transfer coefficients by extrapolation and numerical inverse methods in squeeze casting of magnesium alloy AM60. J. Mater. Process. Technol. 211(8), 1432–1440 (2011)

    Article  Google Scholar 

  15. Zhang, L., Li, L., Ju, H., Zhu, B.: Inverse identification of interfacial heat transfer coefficient between the casting and metal mold using neural network. Energy Convers. Manag. 51(10), 1898–1904 (2010)

    Article  Google Scholar 

  16. Palumbo, G., Piglionico, V., Piccininni, A., Guglielmi, P., Sorgente, D., Tricarico, L.: Determination of interfacial heat transfer coefficients in a sand mould casting process using an optimised inverse analysis. Appl. Therm. Eng. 78, 682–694 (2015)

    Article  Google Scholar 

  17. Wong, M.D., Pao, W.K.: A genetic algorithm for optimizing gravity die casting’s heat transfer coefficients. Expert Syst. Appl. 38(6), 7076–7080 (2011)

    Article  Google Scholar 

  18. Dousti, P., Ranjbar, A.A., Famouri, M., Ghaderi, A.: An inverse problem in estimation of interfacial heat transfer coefficient during two-dimensional solidification of Al 5% Wt-Si based on PSO. Int. J. Numer. Meth. Heat Fluid Flow 22(4), 473–490 (2012)

    Article  Google Scholar 

  19. Ranjbar, A., Ghaderi, A., Dousti, P., Famouri, M.: A transient two-dimentional inverse estimation of the metal-mold heat transfer coefficient during squeeze casting of AL-4.5 wt% CU. Int. J. Eng.-Trans. A: Basics 23(3&4), 273 (2011)

    Google Scholar 

  20. Vasileiou, A.N., Vosniakos, G.C., Pantelis, D.I.: Determination of local heat transfer coefficients in precision castings by genetic optimisation aided by numerical simulation. Proc. Inst. Mechanical Eng. Part C: J. Mechanical Eng. Sci. 229(4), 735–750 (2015)

    Article  Google Scholar 

  21. Yu, Y., Luo, X.: Identification of heat transfer coefficients of steel billet in continuous casting by weight least square and improved difference evolution method. Appl. Therm. Eng. 114, 36–43 (2017)

    Article  Google Scholar 

  22. Ozisik, M.N.: Inverse Heat Transfer: Fundamentals and Applications. CRC Press (2000)

    Google Scholar 

  23. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vishweshwara, P.S., Gnanasekaran, N., Arun, M. (2019). Estimation of Interfacial Heat Transfer Coefficient for Horizontal Directional Solidification of Sn-5 wt%Pb Alloy Using Genetic Algorithm as Inverse Method. In: Bansal, J., Das, K., Nagar, A., Deep, K., Ojha, A. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 816. Springer, Singapore. https://doi.org/10.1007/978-981-13-1592-3_35

Download citation

Publish with us

Policies and ethics