Abstract
Manufacturing is the foundation of any industrialized country that involves making products from raw materials using various processes. Usually, casting and metal forming processes are used to produce most of the parts, and afterword, the parts are machined to obtain the desired size, shape and surface finish. The traditional machining processes, i.e., turning, milling, grinding, drilling, are widely used to obtain the desired product. The proper selection of process parameters is required to produce products at low cost, high quality and within time bound. Therefore, in past, researchers had optimized the process parameters to obtain the desired product. In the present study, the overview of turning process and the review of research related to optimization of turning process using evolutionary optimization techniques are carried out. The review period is selected from the year 2000 to 2016. The present review work is well-organized information in terms of objectives, process parameters, constraints and optimization techniques for optimization of turning process that can be beneficial for succeeding researchers to ascertain the gap in the research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benardos, P.G., Vosnaikos, G.C.: Predicting surface roughness in machining: a review. Int. J. Mach. Tools Manuf 43, 833–844 (2003)
Savsani, Poonam: Jhalab, R. L., Savsani, Vimal: Effect of hybridizing Biogeography-based Optimization (BBO) technique with Artificial Immune Algorithm (AIA) and Ant Colony Optimization (ACO). Appl. Soft Comput. 21, 542–553 (2014)
Rana, P.B., Lalwani, D.I.: Optimization of turning process using amended differential evolution algorithm. Eng. Sci. Technol. Int. J. 20, 1285–1301 (2017)
Chen, M.C., Tsai, D.M.: A simulated annealing approach for optimization of multi-pass turning operations. Int. J. Prod. Res. 34(10), 2803–2825 (1996)
Onwubolu, G.C., Kumalo, T.: Optimization of multi-pass turning operations with genetic algorithm. Int. J. Prod. Res. 39, 3727–3745 (2001)
Wang, X., Jawahir, I.S.: IFSA World Congress and 20th NAFIPS International Conference, 2001, Vancouver (2001)
Wang, X., Da, Z.J., Balaji, A. K., Jawahir. I.S.: Performance-based optimal selection of cutting conditions and cutting tools in multipass turning operations using genetic algorithms. Int. J. Prod. Res. 40(9), 3727–3745 (2002)
Chen, M.C, Chen K.Y.: Optimization of multi-pass turning operations with genetic algorithms: a note. Int. J. Prod. Res. 41, 3385–3388 (2003)
Vijayakumar, K., Prabhaharan, G., Asokan, P., Saravanan, R.: Optimization of multi-pass turning operations using ant colony system. Int. J. Mach. Tools Manuf. 43, 1633–1639 (2003)
Chen, M.C.: Optimizing machining economics models of turning operations using the scatter search approach. Int. J. Prod. Res. 42, 2611–2625 (2004)
Sardinas, R.Q., Santana M.R., Brindis E.A.: Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes. Eng. Appl. Artif. Intell. 19, 127–133 (2006)
Wang, Y.C.: A note on ‘optimization of multi-pass turning operations using ant colony system’. Int. J. Mach. Tools Manuf. 47, 2057–2059 (2007)
Sarvanan, R., Janakiraman, V.: study on reduction of machining time in cnc turning centre by genetic algorithm. In: International Conference on Computational Intelligence and Multimedia Applications, pp. 481–486. Sivakashi, Tamil Nadu (2007)
Siva-Sankar, R., Asokan, P., Sarvanan, R., Kumanan, S., Prabhaharan, G.: Selection of machining parameters for constrained machining problem using evolutionary computation. Int. J. Adv. Manuf. Technol. 32, 892–901 (2007)
Prasad, C.F., Jaybal, S., Natrajan, U.: Optimization of tool wear in turning using genetic algorithm. Indian J. Eng. Mater. Sci. 14, 403–407 (2007)
Singh, D., Rao, P.V.: Optimization of tool geometry and cutting parameters for hard turning. Mater. Manuf. Process. 22, 15–21 (2007)
Abburi, N.R., Dixit, U.S.: Multi-objective optimization of multipass turning processes. Int. J. Adv. Manuf. Technol. 32, 902–910 (2007)
Yildiz, A.R.: Hybrid Taguchi-harmony search algorithm for solving engineering optimization problems. Int. J. Ind. Eng. 15, 286–293 (2008)
Tang, L., Landers, R.G., Balakrishnan, S.N.: Parallel turning process parameter optimization based on a novel heuristic approach. J. Manuf. Sci. Eng. 130(031002), 1–12, (2008)
Wu, J., Yao, Y.: A modified ant colony system for the selection of machining parameters. In: International Conference on Grid and Cooperative Computing. China (2008)
Kim, S.S., Kim, I.H., Mani, V., Kim, H.J.: Real-coded genetic algorithm for machining condition optimization. Int. J. Adv. Manuf Technol. 38, 884–895 (2008)
Kolahan, F., Abachizadeh, M.: Optimizing turning parameters for cylindrical parts using simulated annealing. In: Proceedings of World Academy of Science, Engineering and Technology vol. 36. Dec 2008. ISSN 2070-3740
Yildiz, A.R.: A novel particle swarm optimization approach for product design and manufacturing. Int. J. Adv. Manuf. Technol. 40, 617–628 (2009)
Cus, F., Balic, J., Zuperl, U.: Hybrid ANFIS-ants system based optimisation of turning parameters. J. Achiev. Mater. Manuf. Eng. 36(1) 79–86 (2009)
Srinivas, J., Giri, R., Yang, S.: Optimization of multi-pass turning using particle swarm intelligence. Int. J. Adv. Manuf. Technol. 40, 56–66 (2009)
Zheng, L.Y., Ponnambalam, SG.: A Hybrid GA-AIS Heuristic for Optimization of Multipass Turning Operations. In: Third International Conference ICIRA 2010, Part II, LNAI 6425, pp. 599–611. Shanghai, China (2010)
Raj, T.G.A., Namboothiri, V.N.N.: An Improved genetic algorithm for the prediction of surface finish in dry turning of SS 420 materials. Int. J. Adv. Manuf. Technol. 47, 313–324 (2010)
Raja, S.B., Baskar, N.: Optimization techniques for machining operations: a retrospective research based on various mathematical models. Int. J. Adv. Manuf. Technol. 48, 1075–1090 (2010)
Xie, S., Pan, L.: Selection of machining parameters using genetic algorithms. In: The 5th International Conference on Computer Science & Education, pp. 1147–1150. Hefei, China, 24–27 Aug 2010
Zheng, L.Y., Ponnambalam, S.G.: Optimization of multipass turning operations using particle swarm optimization. In: Proceeding of the 7th International Symposium on Mechatronics and its Applications (ISMA10), pp. 1–6. Sharjah, UAE, 20–22 April 2010
Raja, S.B.: Investigation of optimal machining parameters for turning operation using intelligent techniques. Int. J. Mach. Mach. Mater. 8(1/2), 146–166 (2010)
Agapiou, J.S.: Optimization of multistage machining systems, Part 1: Mathematical Solution. J. Eng Ind. 114(4). Trans. ASME J. Eng. Ind. 114 524–531 (1992)
Yang, S.H., Natarajan, U.: Multi-objective optimization of cutting parameters in turning process using differential evolution and non-dominated sorting genetic algorithm-II approaches. Int. J. Adv. Manuf. Technol. 49, 773–784 (2010)
Raja, S.B., Baskar, N.: Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation. Int. J. Adv. Manuf. Technol. 54, 445–463 (2011)
An, L.: Optimal selection of machining parameters for multi-pass turning operations. Adv. Mater. Research Vol 156–157, pp 956-960 (2011)
Costa, A., Celano, G., Fichera, S.: Optimization of multi-pass turning economies through a hybrid partile swarm optimization technique. Int. J. Adv. Manuf. Technol. 53, 421–433 (2011)
Aungkulanon, P., Chai-ead, N., Luangpaiboon, P.: Simulated manufacturing process improvement via particle swarm optimisation and firefly algorithms. In: Proceeding of the International Multi conference of Engineering and Computer Scientists, IMECS, vol. 2. Honkong, 16–18 March 2011
Hippalgaonkar, R.R., Shin, Y.C.: Robust optimisation of machining conditions with tool life and surface roughness uncertainties. Int. J. Prod. Res. 49(13), 3963–3978
Singh, Y., Chauhan, P.: Analysing constrained machining conditions in turning operations by differential evolution. Adv. Mech. Eng. Appl. (AMEA) 2(3), (2012). ISSN 2167-6380
Yildiz, A.R.: A comparative study of population-based optimization algorithms for turning operations. Information Sciences 210, 81–88 (2012)
Aryanfar, A., Solimanpur, M.: Optimization of multi-pass turning operations using genetic algorithms. In: Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management, pp. 1560–1568. Istanbul, Turkey, 3–6 July 2012
Khan, M.A., Kumar, A.S., Poomari, A.: A hybrid algorithm to optimize cutting parameter for machining GFRP composite using alumina cutting tools. Int. J. Adv. Manuf. Technol. 59, 1047–1056 (2012)
Rao, R.V., Kalyankar, V.D.: Parameter optimization of machining processes using a new optimization. Algorithm. Mater. Manuf. Process. 27, 978–985 (2012)
Lee, Y.Z., Ponnambalam, S.G.: Optimisation of multipass turning operations using PSO and GA-AIS algorithms. Int. J. Prod. Res. 50(22) 6499–6518 (2012)
Xie, S., Guo, Y.: Optimisation of machining parameters in multi-pass turnings using ant colony optimisations. Int. J. Mach. Machinability Mater. 11(2), 204–220 (2012)
Lu, K., Jing, M., Zhang, X., Dong, G., Liu, H.: An effective optimization algorithm for multipass turning of flexible workpieces. J. Intell. Manuf. 26(4), 831–840 (2013)
Ahilan, C., Kumanan, S., Sivakumaran, N., Dhas, J.E.R.: Modeling and prediction of machining quality in CNC turning process using intelligent hybrid decision-making tools. Appl. Soft Comput. 13, 1543–1551 (2013)
Belloufi, A., Assas, M., Rezgui, I.: Optimization of turning operations by using a hybrid genetic algorithm with sequential quadratic programming. J. Appl. Res. Technol 11 88–94 (2013)
Jabri, A., Barkany, A. E., Khalifi, A.E.: Multi-objective optimization using genetic algorithms of multi-pass turning process. Engineering 5, 601–610 (2013)
Rao, R.V., Kalyankar, V.D.: Multi-pass turning process parameter optimization using teaching–learning-based optimization algorithm. Scientia Iranica E, 20(3), 967–974 (2013)
Yildiz, A.R.: Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl. Soft Comput. 13, 1433–1439 (2013)
Yildiz, A.R.: Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf. Sci. 220, 399–407 (2013)
Xie, S., Pan, L.: Optimization of machining parameters for parallel turnings using estimation of distribution algorithms. Adv. Mater. Res. 753–755, 1192--1195 (2013)
Yildiz, A.R.: Optimization of multi-pass turning operations using hybrid teaching learning-based approach. Int. J. Adv. Manuf. Technol. 66, 1319–1326 (2013)
Singh, Y., Chauhan, P.: Selection of optimal machining conditions in multi-pass turning operations using real coded genetic algorithm. Int. J. of Appl. Math. Mech. 10(4), 73–83 (2014)
Chauhan, P., Pant, M., Deep, K.: Parameter optimization of multi-pass turning using chaotic PSO. Int. J. Mach. Learn. Cybernet. 6(3) 385–397 (2014)
Belloufi, A., Assas, M., Rezgui, I.: Intelligent selection of machining parameters in multipass turnings using firefly algorithm. Model. Simul. Eng. 2014, 6, Article ID 592627 (2014)
Hrelja, M., Klancnik, S., Balic, J., Brezocnik, M.: Modelling of a turning process using the gravitational search algorithm. Int. J. Simul. Model. 13(1), 30–41 (2014)
Hrelja, M., Klancnik, S., Irgolic, T., Paulic, M., Balic, J., Brezocnik, M.: Turning parameters optimization using particle swarm optimization. Procedia Eng. 69, 670--677 (2014)
Acayaba, G.M.A., Escalona, P.M.: Prediction of surface roughness in low speed turning of AISI316 austenitic stainless steel. CIRP J. Manuf. Sci. Technol. 11, 62–67 (2015)
Gayatri, R., Baskar, N.: Evaluating process parameters of multi-pass turning process using hybrid genetic simulated swarm algorithm. J. Adv. Manuf. Syst. 14(4), 215–233 (2015)
Gayatri, R., Baskar, N.: Performance analysis of non-traditional algorithmic parameters in machining operation. Int. J. Adv. Manuf. Technol. 77, 443–460 (2015)
Kubler, F., Bohner, J., Steinhilper, R.: Resource efficiency optimization of manufacturing processes using evolutionary computation: a turning case. Procedia CIRP 29, 822–827 (2015)
Lin, W., Yu, D.Y., Wang, S., Chaoyong Z., Sanqiang Z., Huiyu T., Min L., Shengqiang L.: Multi-objective teaching–learning-based optimization algorithm for reducing carbon emissions and operation time in turning operations. Eng. Optim. 47(7) 994–1007 (2015)
Chauhan, P., Pant, M., Deep, K.: Parameter optimization of multi-pass turning using chaotic. Int. J. Mach. Learn. Cyber. 6, 319–337 (2015)
Zhigang J., Fan Z., Hua Z., Yan W., John W. Sutherland: optimization of machining parameters considering minimum cutting fluid consumption. J. Clean. Prod. 108, 183–191 (2015)
Mellal, M.A., Williams, E.J.: Cuckoo optimization algorithm for unit production cost in multi-pass turning operations. Int. J. Adv. Manuf. Technol. 76(1), 647–656 (2016)
Lu, C., Gao, L., Li, X., Chen, P.: Energy-efficient multi-pass turning operation using multi-objective backtracking search algorithm. J. Clean. Prod. 137, 1516–1531 (2016)
Park, H.-S., Nguyen, T.-T., Dang, X.-P.: Multi-objective optimization of turning process of hardened material for energy efficiency. Int. J. Precision Eng. Manuf. 17(12) 1623–1631 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Rana, P.B., Patel, J.L., Lalwani, D.I. (2019). Parametric Optimization of Turning Process Using Evolutionary Optimization Techniques—A Review (2000–2016). In: Bansal, J., Das, K., Nagar, A., Deep, K., Ojha, A. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 817. Springer, Singapore. https://doi.org/10.1007/978-981-13-1595-4_13
Download citation
DOI: https://doi.org/10.1007/978-981-13-1595-4_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-1594-7
Online ISBN: 978-981-13-1595-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)