Skip to main content

Parametric Optimization of Turning Process Using Evolutionary Optimization Techniques—A Review (2000–2016)

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 817))

Abstract

Manufacturing is the foundation of any industrialized country that involves making products from raw materials using various processes. Usually, casting and metal forming processes are used to produce most of the parts, and afterword, the parts are machined to obtain the desired size, shape and surface finish. The traditional machining processes, i.e., turning, milling, grinding, drilling, are widely used to obtain the desired product. The proper selection of process parameters is required to produce products at low cost, high quality and within time bound. Therefore, in past, researchers had optimized the process parameters to obtain the desired product. In the present study, the overview of turning process and the review of research related to optimization of turning process using evolutionary optimization techniques are carried out. The review period is selected from the year 2000 to 2016. The present review work is well-organized information in terms of objectives, process parameters, constraints and optimization techniques for optimization of turning process that can be beneficial for succeeding researchers to ascertain the gap in the research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benardos, P.G., Vosnaikos, G.C.: Predicting surface roughness in machining: a review. Int. J. Mach. Tools Manuf 43, 833–844 (2003)

    Article  Google Scholar 

  2. Savsani, Poonam: Jhalab, R. L., Savsani, Vimal: Effect of hybridizing Biogeography-based Optimization (BBO) technique with Artificial Immune Algorithm (AIA) and Ant Colony Optimization (ACO). Appl. Soft Comput. 21, 542–553 (2014)

    Article  Google Scholar 

  3. Rana, P.B., Lalwani, D.I.: Optimization of turning process using amended differential evolution algorithm. Eng. Sci. Technol. Int. J. 20, 1285–1301 (2017)

    Article  Google Scholar 

  4. Chen, M.C., Tsai, D.M.: A simulated annealing approach for optimization of multi-pass turning operations. Int. J. Prod. Res. 34(10), 2803–2825 (1996)

    Article  Google Scholar 

  5. Onwubolu, G.C., Kumalo, T.: Optimization of multi-pass turning operations with genetic algorithm. Int. J. Prod. Res. 39, 3727–3745 (2001)

    Article  Google Scholar 

  6. Wang, X., Jawahir, I.S.: IFSA World Congress and 20th NAFIPS International Conference, 2001, Vancouver (2001)

    Google Scholar 

  7. Wang, X., Da, Z.J., Balaji, A. K., Jawahir. I.S.: Performance-based optimal selection of cutting conditions and cutting tools in multipass turning operations using genetic algorithms. Int. J. Prod. Res. 40(9), 3727–3745 (2002)

    Article  Google Scholar 

  8. Chen, M.C, Chen K.Y.: Optimization of multi-pass turning operations with genetic algorithms: a note. Int. J. Prod. Res. 41, 3385–3388 (2003)

    Article  Google Scholar 

  9. Vijayakumar, K., Prabhaharan, G., Asokan, P., Saravanan, R.: Optimization of multi-pass turning operations using ant colony system. Int. J. Mach. Tools Manuf. 43, 1633–1639 (2003)

    Article  Google Scholar 

  10. Chen, M.C.: Optimizing machining economics models of turning operations using the scatter search approach. Int. J. Prod. Res. 42, 2611–2625 (2004)

    Article  Google Scholar 

  11. Sardinas, R.Q., Santana M.R., Brindis E.A.: Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes. Eng. Appl. Artif. Intell. 19, 127–133 (2006)

    Google Scholar 

  12. Wang, Y.C.: A note on ‘optimization of multi-pass turning operations using ant colony system’. Int. J. Mach. Tools Manuf. 47, 2057–2059 (2007)

    Article  Google Scholar 

  13. Sarvanan, R., Janakiraman, V.: study on reduction of machining time in cnc turning centre by genetic algorithm. In: International Conference on Computational Intelligence and Multimedia Applications, pp. 481–486. Sivakashi, Tamil Nadu (2007)

    Google Scholar 

  14. Siva-Sankar, R., Asokan, P., Sarvanan, R., Kumanan, S., Prabhaharan, G.: Selection of machining parameters for constrained machining problem using evolutionary computation. Int. J. Adv. Manuf. Technol. 32, 892–901 (2007)

    Article  Google Scholar 

  15. Prasad, C.F., Jaybal, S., Natrajan, U.: Optimization of tool wear in turning using genetic algorithm. Indian J. Eng. Mater. Sci. 14, 403–407 (2007)

    Google Scholar 

  16. Singh, D., Rao, P.V.: Optimization of tool geometry and cutting parameters for hard turning. Mater. Manuf. Process. 22, 15–21 (2007)

    Article  Google Scholar 

  17. Abburi, N.R., Dixit, U.S.: Multi-objective optimization of multipass turning processes. Int. J. Adv. Manuf. Technol. 32, 902–910 (2007)

    Article  Google Scholar 

  18. Yildiz, A.R.: Hybrid Taguchi-harmony search algorithm for solving engineering optimization problems. Int. J. Ind. Eng. 15, 286–293 (2008)

    Google Scholar 

  19. Tang, L., Landers, R.G., Balakrishnan, S.N.: Parallel turning process parameter optimization based on a novel heuristic approach. J. Manuf. Sci. Eng. 130(031002), 1–12, (2008)

    Article  Google Scholar 

  20. Wu, J., Yao, Y.: A modified ant colony system for the selection of machining parameters. In: International Conference on Grid and Cooperative Computing. China (2008)

    Google Scholar 

  21. Kim, S.S., Kim, I.H., Mani, V., Kim, H.J.: Real-coded genetic algorithm for machining condition optimization. Int. J. Adv. Manuf Technol. 38, 884–895 (2008)

    Article  Google Scholar 

  22. Kolahan, F., Abachizadeh, M.: Optimizing turning parameters for cylindrical parts using simulated annealing. In: Proceedings of World Academy of Science, Engineering and Technology vol. 36. Dec 2008. ISSN 2070-3740

    Google Scholar 

  23. Yildiz, A.R.: A novel particle swarm optimization approach for product design and manufacturing. Int. J. Adv. Manuf. Technol. 40, 617–628 (2009)

    Google Scholar 

  24. Cus, F., Balic, J., Zuperl, U.: Hybrid ANFIS-ants system based optimisation of turning parameters. J. Achiev. Mater. Manuf. Eng. 36(1) 79–86 (2009)

    Google Scholar 

  25. Srinivas, J., Giri, R., Yang, S.: Optimization of multi-pass turning using particle swarm intelligence. Int. J. Adv. Manuf. Technol. 40, 56–66 (2009)

    Article  Google Scholar 

  26. Zheng, L.Y., Ponnambalam, SG.: A Hybrid GA-AIS Heuristic for Optimization of Multipass Turning Operations. In: Third International Conference ICIRA 2010, Part II, LNAI 6425, pp. 599–611. Shanghai, China (2010)

    Chapter  Google Scholar 

  27. Raj, T.G.A., Namboothiri, V.N.N.: An Improved genetic algorithm for the prediction of surface finish in dry turning of SS 420 materials. Int. J. Adv. Manuf. Technol. 47, 313–324 (2010)

    Google Scholar 

  28. Raja, S.B., Baskar, N.: Optimization techniques for machining operations: a retrospective research based on various mathematical models. Int. J. Adv. Manuf. Technol. 48, 1075–1090 (2010)

    Google Scholar 

  29. Xie, S., Pan, L.: Selection of machining parameters using genetic algorithms. In: The 5th International Conference on Computer Science & Education, pp. 1147–1150. Hefei, China, 24–27 Aug 2010

    Google Scholar 

  30. Zheng, L.Y., Ponnambalam, S.G.: Optimization of multipass turning operations using particle swarm optimization. In: Proceeding of the 7th International Symposium on Mechatronics and its Applications (ISMA10), pp. 1–6. Sharjah, UAE, 20–22 April 2010

    Google Scholar 

  31. Raja, S.B.: Investigation of optimal machining parameters for turning operation using intelligent techniques. Int. J. Mach. Mach. Mater. 8(1/2), 146–166 (2010)

    Article  Google Scholar 

  32. Agapiou, J.S.: Optimization of multistage machining systems, Part 1: Mathematical Solution. J. Eng Ind. 114(4). Trans. ASME J. Eng. Ind. 114 524–531 (1992)

    Article  Google Scholar 

  33. Yang, S.H., Natarajan, U.: Multi-objective optimization of cutting parameters in turning process using differential evolution and non-dominated sorting genetic algorithm-II approaches. Int. J. Adv. Manuf. Technol. 49, 773–784 (2010)

    Article  Google Scholar 

  34. Raja, S.B., Baskar, N.: Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation. Int. J. Adv. Manuf. Technol. 54, 445–463 (2011)

    Google Scholar 

  35. An, L.: Optimal selection of machining parameters for multi-pass turning operations. Adv. Mater. Research Vol 156–157, pp 956-960 (2011)

    Article  Google Scholar 

  36. Costa, A., Celano, G., Fichera, S.: Optimization of multi-pass turning economies through a hybrid partile swarm optimization technique. Int. J. Adv. Manuf. Technol. 53, 421–433 (2011)

    Article  Google Scholar 

  37. Aungkulanon, P., Chai-ead, N., Luangpaiboon, P.: Simulated manufacturing process improvement via particle swarm optimisation and firefly algorithms. In: Proceeding of the International Multi conference of Engineering and Computer Scientists, IMECS, vol. 2. Honkong, 16–18 March 2011

    Google Scholar 

  38. Hippalgaonkar, R.R., Shin, Y.C.: Robust optimisation of machining conditions with tool life and surface roughness uncertainties. Int. J. Prod. Res. 49(13), 3963–3978

    Article  Google Scholar 

  39. Singh, Y., Chauhan, P.: Analysing constrained machining conditions in turning operations by differential evolution. Adv. Mech. Eng. Appl. (AMEA) 2(3), (2012). ISSN 2167-6380

    Google Scholar 

  40. Yildiz, A.R.: A comparative study of population-based optimization algorithms for turning operations. Information Sciences 210, 81–88 (2012)

    Article  Google Scholar 

  41. Aryanfar, A., Solimanpur, M.: Optimization of multi-pass turning operations using genetic algorithms. In: Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management, pp. 1560–1568. Istanbul, Turkey, 3–6 July 2012

    Google Scholar 

  42. Khan, M.A., Kumar, A.S., Poomari, A.: A hybrid algorithm to optimize cutting parameter for machining GFRP composite using alumina cutting tools. Int. J. Adv. Manuf. Technol. 59, 1047–1056 (2012)

    Article  Google Scholar 

  43. Rao, R.V., Kalyankar, V.D.: Parameter optimization of machining processes using a new optimization. Algorithm. Mater. Manuf. Process. 27, 978–985 (2012)

    Google Scholar 

  44. Lee, Y.Z., Ponnambalam, S.G.: Optimisation of multipass turning operations using PSO and GA-AIS algorithms. Int. J. Prod. Res. 50(22) 6499–6518 (2012)

    Article  Google Scholar 

  45. Xie, S., Guo, Y.: Optimisation of machining parameters in multi-pass turnings using ant colony optimisations. Int. J. Mach. Machinability Mater. 11(2), 204–220 (2012)

    Article  Google Scholar 

  46. Lu, K., Jing, M., Zhang, X., Dong, G., Liu, H.: An effective optimization algorithm for multipass turning of flexible workpieces. J. Intell. Manuf. 26(4), 831–840 (2013)

    Article  Google Scholar 

  47. Ahilan, C., Kumanan, S., Sivakumaran, N., Dhas, J.E.R.: Modeling and prediction of machining quality in CNC turning process using intelligent hybrid decision-making tools. Appl. Soft Comput. 13, 1543–1551 (2013)

    Article  Google Scholar 

  48. Belloufi, A., Assas, M., Rezgui, I.: Optimization of turning operations by using a hybrid genetic algorithm with sequential quadratic programming. J. Appl. Res. Technol 11 88–94 (2013)

    Article  Google Scholar 

  49. Jabri, A., Barkany, A. E., Khalifi, A.E.: Multi-objective optimization using genetic algorithms of multi-pass turning process. Engineering 5, 601–610 (2013)

    Article  Google Scholar 

  50. Rao, R.V., Kalyankar, V.D.: Multi-pass turning process parameter optimization using teaching–learning-based optimization algorithm. Scientia Iranica E, 20(3), 967–974 (2013)

    Google Scholar 

  51. Yildiz, A.R.: Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl. Soft Comput. 13, 1433–1439 (2013)

    Article  Google Scholar 

  52. Yildiz, A.R.: Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf. Sci. 220, 399–407 (2013)

    Article  MathSciNet  Google Scholar 

  53. Xie, S., Pan, L.: Optimization of machining parameters for parallel turnings using estimation of distribution algorithms. Adv. Mater. Res. 753755, 1192--1195 (2013)

    Article  Google Scholar 

  54. Yildiz, A.R.: Optimization of multi-pass turning operations using hybrid teaching learning-based approach. Int. J. Adv. Manuf. Technol. 66, 1319–1326 (2013)

    Article  Google Scholar 

  55. Singh, Y., Chauhan, P.: Selection of optimal machining conditions in multi-pass turning operations using real coded genetic algorithm. Int. J. of Appl. Math. Mech. 10(4), 73–83 (2014)

    Google Scholar 

  56. Chauhan, P., Pant, M., Deep, K.: Parameter optimization of multi-pass turning using chaotic PSO. Int. J. Mach. Learn. Cybernet. 6(3) 385–397 (2014)

    Article  Google Scholar 

  57. Belloufi, A., Assas, M., Rezgui, I.: Intelligent selection of machining parameters in multipass turnings using firefly algorithm. Model. Simul. Eng. 2014, 6, Article ID 592627 (2014)

    Google Scholar 

  58. Hrelja, M., Klancnik, S., Balic, J., Brezocnik, M.: Modelling of a turning process using the gravitational search algorithm. Int. J. Simul. Model. 13(1), 30–41 (2014)

    Article  Google Scholar 

  59. Hrelja, M., Klancnik, S., Irgolic, T., Paulic, M., Balic, J., Brezocnik, M.: Turning parameters optimization using particle swarm optimization. Procedia Eng. 69, 670--677 (2014)

    Google Scholar 

  60. Acayaba, G.M.A., Escalona, P.M.: Prediction of surface roughness in low speed turning of AISI316 austenitic stainless steel. CIRP J. Manuf. Sci. Technol. 11, 62–67 (2015)

    Article  Google Scholar 

  61. Gayatri, R., Baskar, N.: Evaluating process parameters of multi-pass turning process using hybrid genetic simulated swarm algorithm. J. Adv. Manuf. Syst. 14(4), 215–233 (2015)

    Article  Google Scholar 

  62. Gayatri, R., Baskar, N.: Performance analysis of non-traditional algorithmic parameters in machining operation. Int. J. Adv. Manuf. Technol. 77, 443–460 (2015)

    Article  Google Scholar 

  63. Kubler, F., Bohner, J., Steinhilper, R.: Resource efficiency optimization of manufacturing processes using evolutionary computation: a turning case. Procedia CIRP 29, 822–827 (2015)

    Article  Google Scholar 

  64. Lin, W., Yu, D.Y., Wang, S., Chaoyong Z., Sanqiang Z., Huiyu T., Min L., Shengqiang L.: Multi-objective teaching–learning-based optimization algorithm for reducing carbon emissions and operation time in turning operations. Eng. Optim. 47(7) 994–1007 (2015)

    Article  MathSciNet  Google Scholar 

  65. Chauhan, P., Pant, M., Deep, K.: Parameter optimization of multi-pass turning using chaotic. Int. J. Mach. Learn. Cyber. 6, 319–337 (2015)

    Google Scholar 

  66. Zhigang J., Fan Z., Hua Z., Yan W., John W. Sutherland: optimization of machining parameters considering minimum cutting fluid consumption. J. Clean. Prod. 108, 183–191 (2015)

    Google Scholar 

  67. Mellal, M.A., Williams, E.J.: Cuckoo optimization algorithm for unit production cost in multi-pass turning operations. Int. J. Adv. Manuf. Technol. 76(1), 647–656 (2016)

    Article  Google Scholar 

  68. Lu, C., Gao, L., Li, X., Chen, P.: Energy-efficient multi-pass turning operation using multi-objective backtracking search algorithm. J. Clean. Prod. 137, 1516–1531 (2016)

    Article  Google Scholar 

  69. Park, H.-S., Nguyen, T.-T., Dang, X.-P.: Multi-objective optimization of turning process of hardened material for energy efficiency. Int. J. Precision Eng. Manuf. 17(12) 1623–1631 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthiv B. Rana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rana, P.B., Patel, J.L., Lalwani, D.I. (2019). Parametric Optimization of Turning Process Using Evolutionary Optimization Techniques—A Review (2000–2016). In: Bansal, J., Das, K., Nagar, A., Deep, K., Ojha, A. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 817. Springer, Singapore. https://doi.org/10.1007/978-981-13-1595-4_13

Download citation

Publish with us

Policies and ethics