Skip to main content

Numerical Investigation of Flexural Properties of Curved Layer FDM Parts

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Abstract

The printing approach of curved layer fused deposition modelling (CLFDM) is gaining popularity for its superior part properties when compared to those obtained from conventional FDM approach. Past studies reveal that the study of effects of fill gap (FG) on these two approaches (CLFDM and conventional FDM) with different printing directions needs a thorough numerical investigation. Therefore, the present work introduces numerical modelling based on genetic programming for investigating the flexural strength of the fabricated parts from FDM and CLFDM. It was found that the GP-based flexural strength models are able to generalize both processes satisfactorily. It was also noticed that the GP-based flexural strength models for horizontal printed parts predict with higher accuracy than those for parts printed in vertical directions. Experiments were performed to validate the GP models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panda, B., Tan, M.J., Gibson, I., Chua, C.K.: The disruptive evolution of 3D printing. In: Chua, C.K., Yaong, W.Y., Tan, M.J., Liu, E., Tor, S.B. (eds) Proceedings of 2nd International Conference Progress Additive Manufacturing (Pro-AM 2016). National Research Foundation, Singapore, pp. 152–157 (2016)

    Google Scholar 

  2. Gibson, I., Rosen, D.W., Stucker, B.: Additive manufacturing technologies, vol. 238. Springer, New York (2010)

    Book  Google Scholar 

  3. Mahapatra, S.S., Panda, B.N.: Benchmarking of rapid prototyping systems using grey relational analysis. Int. J. Serv. Oper. Manag. 16(4), 460–477 (2013)

    Google Scholar 

  4. Mironov, V., et al.: Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21(4), 157–161 (2003)

    Article  Google Scholar 

  5. Panda, B., Paul, S.C., Tan, M.J.: Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater. Lett. 209, 146–149 (2017)

    Article  Google Scholar 

  6. Panda, B.N., Bahubalendruni, R.M., Biswal, B.B., Leite, M.: A CAD-based approach for measuring volumetric error in layered manufacturing. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231(13), 2398–2406 (2017)

    Article  Google Scholar 

  7. Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31(1), 287–295 (2010)

    Article  Google Scholar 

  8. Thrimurthulu, K., Pandey, P.M., Reddy, N.V.: Optimum part deposition orientation in fused deposition modeling. Int. J. Mach. Tools Manuf. 44(6), 585–594 (2004)

    Article  Google Scholar 

  9. Panda, B., Paul, S.C., Mohamed, N.A.N., Tay, Y.W.D., Tan, M.J.: Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement 113, 108–116 (2018)

    Article  Google Scholar 

  10. Hutmacher, D.W., et al.: Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 55(2), 203–216 (2001)

    Article  Google Scholar 

  11. Bellini, A., Güçeri, S.: Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyping J. 9(4), 252–264 (2003)

    Article  Google Scholar 

  12. Guan, H.W., et al.: Influence of fill gap on flexural strength of parts fabricated by curved layer fused deposition modeling. Proc. Technol. 20, 243–248 (2015)

    Article  Google Scholar 

  13. Singamneni, S., et al.: Modeling and evaluation of curved layer fused deposition. J. Mater. Process. Technol. 212(1), 27–35 (2012)

    Article  Google Scholar 

  14. Huang, B., Singamneni, S.B.: Curved layer adaptive slicing (CLAS) for fused deposition modelling. Rapid Prototyping J. 21(4), 354–367 (2015)

    Article  Google Scholar 

  15. Huang, B., Singamneni, S.: Curved layer fused deposition modeling with varying raster orientations. Appl. Mech. Mater. 446, 263–269 (2014)

    Article  Google Scholar 

  16. Klosterman, D.A., et al.: Development of a curved layer LOM process for monolithic ceramics and ceramic matrix composites. Rapid Prototyping J. 5(2), 61–71 (1999)

    Article  Google Scholar 

  17. Chakraborty, D., Reddy, B.A., Choudhury, A.R.: Extruder path generation for curved layer fused deposition modeling. Comput. Aided Des. 40(2), 235–243 (2008)

    Article  Google Scholar 

  18. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT USA (1994)

    Google Scholar 

  19. Panda, B.N., Shankhwar, K., Garg, A., Jian, Z.: Performance evaluation of warping characteristic of fused deposition modelling process. Int. J. Adv. Manuf. Technol. 88(5–8), 1799–1811 (2017)

    Article  Google Scholar 

  20. Garg, A., Vijayaraghavan, V., Lam, J.S.L., Singru, M.P., Liang, G.: A Molecular Simulation Based Computational Intelligence Study of a Nano-machining Process with Implications on its Environmental Performance, Swarm and Evolutionary Computation, vol. 21, pp. 54–63 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Hong Kong Polytechnic University under the project code: G-YM77 titled “An Innovative Approach to Additive Manufacturing” for their support. This study is supported by Shantou University Scientific Research Foundation (NTF 16002, NTF 16011). Authors would also like to acknowledge Guangdong Sailing Plan Talent fund of the year 2016. Authors also like to acknowledge Guangdong University Youth Innovation Talent Project (2016KQNCX053) Supported by Department of Education of Guangdong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Garg .

Editor information

Editors and Affiliations

Appendix

Appendix

$$ \begin{aligned} & {\text{Flexural}}\,{\text{strength}}\,{\text{Horizontal}}\_{\text{CLFDM}}\_{\text{GP}} \\ & \quad = - 1611.6967 + ( - 14.945)*({ \cos }({ \cos }(\left( {{ \tan }\left( {\left( {{\text{x}}1} \right) + \left( {\left( {16.361923} \right)} \right)} \right)} \right) \\ & \quad + (( - 18.517307))))) + \left( {193.3434} \right)*\left( {{ \tan }\left( {\left( {{ \tanh }\left( {\left( {{\text{x}}1} \right) + \left( {\left( { - 18.517307} \right)} \right)} \right)} \right)*\left( {{\text{plog}}\left( {{\text{x}}1} \right)} \right)} \right)} \right) \\ & \quad + ( - 5.6196)*\left( {{ \sin }\left( {{ \exp }\left( {{ \exp }\left( {{\text{x}}1} \right)} \right)} \right)} \right) + \left( {64.4466} \right)*\left( {{\text{plog}}\left( {{ \tan }\left( {\left( {{ \sin }\left( {{ \sin }\left( {{ \tanh }\left( {{\text{x}}1} \right)} \right)} \right)} \right)*\left( {{\text{plog}}\left( {{ \tanh }\left( {{\text{x}}1} \right)} \right)} \right)} \right)} \right)} \right) \\ & \quad + \left( {1.4019} \right)*(\left( {\left( {{\text{plog}}\left( {{ \tan }\left( {{\text{x}}1} \right)} \right)} \right) - \left( {{ \tan }\left( {\left( {\left( {15.521232} \right)} \right) - \left( {x1} \right)} \right)} \right)} \right)*({\text{plog}}({ \tan }((( - 18.517307)) \\ & \quad *\left( {{\text{x}}1} \right))))) + ( - 57.8947)*\left( {{\text{plog}}\left( {{ \tan }\left( {\left( {{ \exp }\left( {{ \cos }\left( {{ \cos }\left( {{\text{x}}1} \right)} \right)} \right)} \right)*\left( {{\text{plog}}\left( {{ \tanh }\left( {\left( {{\text{x}}1} \right) + \left( {\left( {16.361923} \right)} \right)} \right)} \right)} \right)} \right)} \right)} \right); \\ \end{aligned} $$
(A1)
$$ \begin{aligned} & {\text{Flexural}}\,{\text{strength}}\,{\text{Horizontal}}\_{\text{FDM}}\_{\text{GP}} \\ & \quad = 23.6759 + \left( {3.9216} \right).*\left( {{ \sin }\left( {{ \cos }\left( {{ \tan }\left( {\left( {{\text{plog}}\left( {{ \tan }\left( {{\text{x}}1} \right)} \right)} \right) + \left( {{ \exp }\left( {{\text{x}}1} \right)} \right)} \right)} \right)} \right)} \right) \\ & \quad + ( - 55.6616).*\left( {{\text{plog}}\left( {\left( {{ \tan }\left( {{\text{x}}1} \right)} \right).*\left( {\left( {{ \cos }\left( {{ \tan }\left( {{ \cos }\left( {{\text{x}}1} \right)} \right)} \right)} \right) + \left( {{\text{x}}1} \right)} \right)} \right)} \right) + \left( {63.1144} \right). \\ & \quad *({\text{plog}}((( - 0.816101)).*\left( {\left( {{ \cos }\left( {{ \tan }\left( {{ \cos }\left( {{\text{x}}1} \right)} \right)} \right)} \right) + \left( {\left( { - 17.537172} \right)} \right)} \right))) \\ & \quad + \left( { - 0.15459} \right).*({ \tan }({ \tanh }({ \cos }({ \exp }((\left( {{\text{x}}1} \right) - \left( {\left( { - 17.537172} \right)} \right)) + \left( {{ \cos }\left( {{\text{x}}1} \right)} \right)))))) \\ & \quad + \left( {18.2054} \right).*(\left( {{ \sin }\left( {{ \exp }\left( {{ \tan }\left( {{ \exp }\left( {\left( { - 8.889970} \right)} \right)} \right)} \right)} \right)} \right) - \left( {{\text{x}}1} \right)) \\ & \quad + \left( {2.4745} \right).*({ \sin }({ \tanh }({ \tan }((\left( {\left( {{\text{x}}1} \right) - \left( {\left( { - 13.964471} \right)} \right)} \right) \\ & \quad - \left( {{ \cos }\left( {\left( {15.506033} \right)} \right)} \right)).*\left( {{ \sin }\left( {{ \sin }\left( {{\text{x}}1} \right)} \right)} \right))))); \\ \end{aligned} $$
(A2)
$$ \begin{aligned} & {\text{FlexuralstrengthVertical}}\_{\text{CLFDM}}\_{\text{GP}} \\ & \quad = - 223.2723 + \left( {362.7024} \right)*\left( {\exp \left( {\sin \left( {\exp \left( {\exp \left( {\tan \left( {\left( {\left( {0.157757} \right)} \right)*\left( {{\text{x}}1} \right)} \right)} \right)} \right)} \right)} \right)} \right) \\ & \quad + \left( {0.018109} \right)*((((\tan (\tan \left( {\left( {{\text{x}}1} \right)*\left( {{\text{x}}1} \right)} \right)))*\left( {\exp \left( {\sin \left( {{\text{x}}1} \right)} \right)} \right))*\left( {\exp \left( {\exp \left( {\sin \left( {\left( {{\text{x}}1} \right)*\left( {{\text{x}}1} \right)} \right)} \right)} \right)} \right)) \\ & \quad *\left( {\tan \left( {\exp \left( {{\text{plog}}\left( {\tan \left( {\exp \left( {{\text{x}}1} \right)} \right)} \right)} \right)} \right)} \right)) + \left( {0.14521} \right)*(\tan (\tan (\left( {\left( {\tanh \left( {{\text{x}}1} \right)} \right) + \left( {\exp \left( {{\text{x}}1} \right)} \right)} \right) \\ & \quad - \left( {\exp \left( {\sin \left( {\left( {{\text{x}}1} \right)*\left( {{\text{x}}1} \right)} \right)} \right)} \right)))) + \left( {31.4346} \right)*(\cos (\left( {\exp \left( {\tan \left( {\tan \left( {\left( {{\text{x}}1} \right)*\left( {{\text{x}}1} \right)} \right)} \right)} \right)} \right)*(\exp (\cos (\left( {\cos \left( {{\text{x}}1} \right)} \right) \\ & \quad - \left( {{\text{plog}}\left( {{\text{x}}1} \right)} \right)))))) + \left( {24.5903} \right)*\left( {\cos \left( {\left( {\tan \left( {\tan \left( {\left( {{\text{x}}1} \right)*\left( {{\text{x}}1} \right)} \right)} \right)} \right)*\left( {\exp \left( {\sin \left( {{\text{x}}1} \right)} \right)} \right)} \right)} \right) \\ & \quad + \left( {0.85622} \right)*(\tan ((({\text{x}}1) + \left( {\tan \left( {{\text{x}}1} \right)} \right)) + \left( {\tan \left( {\exp \left( {\tan \left( {\left( {\left( { - 10.254681} \right)} \right) - \left( {{\text{x}}1} \right)} \right)} \right)} \right)} \right))); \\ \end{aligned} $$
(A3)
$$ \begin{aligned} & {\text{FlexuralstrengthVertical}}\_{\text{FDM}}\_{\text{GP}} \\ & \quad = 31.4187 + \left( {2.6007} \right).*\left( {{ \tan }\left( {\left( {{ \exp }\left( {\left( {{ \tan }\left( {{ \tanh }\left( {\text{x1}} \right)} \right)} \right) + \left( {{ \tanh }\left( {{\text{x}}1} \right)} \right)} \right)} \right) - \left( {{\text{plog}}\left( {{ \tanh }\left( {{ \tanh }\left( {{ \cos }\left( {\text{x1}} \right)} \right)} \right)} \right)} \right)} \right)} \right) \\ & \quad + ( - 23.0296).*\left( {{ \sin }\left( {{\text{plog}}\left( {{ \tan }\left( {\text{x1}} \right)} \right)} \right)} \right) + \left( { - 28.9959} \right).*\left( {{ \tanh }\left( {\left( {{ \cos }\left( {\text{x1}} \right)} \right) - \left( {{ \exp }\left( {{ \tanh }\left( {{ \exp }\left( {\text{x1}} \right)} \right)} \right)} \right)} \right)} \right) \\ & \quad + ( - 9.2956).*((\left( {{ \tanh }\left( {{ \tan }\left( {{ \sin }\left( {{ \tanh }\left( {\text{x1}} \right)} \right)} \right)} \right)} \right) - \left( {{ \tan }\left( {\left( {{ \tanh }\left( {\left( {\text{x1}} \right){ + }\left( {\text{x1}} \right)} \right)} \right).*\left( {{ \cos }\left( {{ \tan }\left( {\text{x1}} \right)} \right)} \right)} \right)} \right)). \\ & \quad *(\left( {{ \sin }\left( {{ \tan }\left( {{\text{plog}}\left( {{ \cos }\left( {\text{x1}} \right)} \right)} \right)} \right)} \right).*(((\left( {{ \exp }\left( {\text{x1}} \right)} \right) - \left( {{ \tan }\left( {\text{x1}} \right)} \right)).*\left( {{ \tan }\left( {\left( {{\text{x}}1} \right) + \left( {\left( {10.438387} \right)} \right)} \right)} \right)) \\ & \quad - ({ \sin }({\text{plog}}((( - 5.811520)).*\left( {{\text{x}}1} \right))))))) + \left( {7.487} \right).*\left( {{ \sin }\left( {\left( {{ \sin }\left( {\left( {\left( { 1 5. 7 1 2 1 2 3} \right)} \right) .*\left( {\text{x1}} \right)} \right)} \right).*\left( {{\text{x}}1} \right)} \right)} \right) \\ & \quad + \left( {15.894} \right).*({ \sin }(((({ \cos }\left( {\left( {{\text{x}}1} \right) + \left( {{\text{x}}1} \right)} \right)) - (\left( {{ \exp }\left( {\left( {11.195960} \right)} \right)} \right) \\ & \quad - \left( {\left( {\left( {19.548163} \right)} \right) + \left( {{\text{x}}1} \right)} \right))).*\left( {{ \sin }\left( {{ \tan }\left( {\text{x1}} \right)} \right)} \right)) + \left( {\left( {{ \sin }\left( {{ \sin }\left( {{ \exp }\left( {\text{x1}} \right)} \right)} \right)} \right).*\left( {{\text{plog}}\left( {{ \tan }\left( {\text{x1}} \right)} \right)} \right)} \right))); \\ \end{aligned} $$
(A4)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, X., Panda, B., Garg, A., Guan, H., Savalani, M.M. (2019). Numerical Investigation of Flexural Properties of Curved Layer FDM Parts. In: Bansal, J., Das, K., Nagar, A., Deep, K., Ojha, A. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 817. Springer, Singapore. https://doi.org/10.1007/978-981-13-1595-4_20

Download citation

Publish with us

Policies and ethics