Abstract
Most image compression algorithms rely on custom-built encoder–decoder pairs, and they lack flexibility and are differing to the data being compressed. In this paper, we have elaborated on the notion of generative compression by implementing various compression techniques using a generative adversarial network. We have also analysed the compression approaches that are implemented using deep learning. Our experiments are performed on the handwritten digits database and are yielding progressive results with both conditional and quantifiable benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Raid, A.M., Khedr, W.M., El-dosuky, M.A., Ahmed, W.: JPEG image compression using discrete cosine transform—a survey. CoRR, arXiv:1405.6147 (2014)
Roy, S., Gupta,D.B., Chaudhuri, S.S., Banerjee, P.K.: Studies and implementation of subband coder and decoder of speech signal using Rayleigh distribution. In: Emerging Trends in Computing and Communication, pp. 11–25. Springer (2014)
Delp, E., Mitchell, O.: Image compression using block truncation coding. IEEE Trans. Commun. 27(9), 1335–1342 (1979)
Nasrabadi, N.M., King, R.A.: Image coding using vector quantization: a review. IEEE Trans. Commun. 36(8), 957–971 (1988)
Miar Naimi, H., Salarian, M.: A fast fractal image compression algorithm using predefined values for contrast scaling. CoRR, arXiv:1501.04140 (2015)
Liu, S., Zhang, Z., Qi, L., Ma, M.: A fractal image encoding method based on statistical loss used in agricultural image compression. Multimed. Tools Appl. 75(23), 15525–15536 (2016)
Chakraborty, S., Jalal, A.S., Bhatnagar, C.: An efficient bit plane X-OR algorithm for irreversible image steganography. CoRR, arXiv:1410.3117 (2014)
Choi, M., Tani, J.: Predictive coding for dynamic visual processing: Development of functional hierarchy in a multiple spatio-temporal scales RNN model. CoRR, arXiv:1708.00812 (2017)
Zaman, N., Pippenger, N.: Asymptotic analysis of run-length encoding. CoRR, arXiv:1504.04070 (2015)
Martin, M.B., Bell, A.E.: New image compression techniques using multiwavelets and multiwavelet packets. IEEE Trans. Image Process. 10(4), 500–510 (2001)
Weinberger, M.J., Seroussi, G., Sapiro, G.: The loco-i lossless image compression algorithm: principles and standardization into JPEG-ls. IEEE Trans. Image Process. 9(8), 1309–1324 (2000)
Rane, S.D., Sapiro, G.: Evaluation of JPEG-ls, the new lossless and controlled-lossy still image compression standard, for compression of high-resolution elevation data. IEEE Trans. Geosci. Remote Sens. 39(10), 2298–2306 (2001)
Andrew N.G.: Sparse autoencoder. CS294A Lect. Notes, 72(2011), 1–19 (2011)
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)
Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2528–2535. IEEE (2010)
Sutskever, I., Hinton, G.E., Taylor, G.W.: The recurrent temporal restricted Boltzmann machine. In: Advances in Neural Information Processing Systems, pp. 1601–1608 (2009)
Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: Artificial Intelligence and Statistics, pp. 448–455 (2009)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv:1511.06434 (2015)
Pu, Y., Gan, Z, Henao, R., Yuan, X., Li, C., Stevens, A., Carin, L.: Variational autoencoder for deep learning of images, labels and captions. In: Advances in Neural Information Processing Systems, pp. 2352–2360 (2016)
Gregor, K., Besse, F., Rezende, D.J., Danihelka, I., Wierstra, D.: Towards conceptual compression. In: Advances in Neural Information Processing Systems, pp. 3549–3557 (2016)
Taubman, D., Marcellin, M.: JPEG2000 Image Compression Fundamentals, Standards and Practice: Image Compression Fundamentals, Standards and Practice, volume 642. Springer Science & Business Media (2012)
Santurkar, S., Budden, D.M., Shavit, N.: Generative compression. CoRR, arXiv:1703.01467 (2017)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: European Conference on Computer Vision, pp. 694–711. Springer (2016)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Adate, A., Saxena, R., Gladys Gnana Kiruba, B. (2019). Analysing Image Compression Using Generative Adversarial Networks. In: Bansal, J., Das, K., Nagar, A., Deep, K., Ojha, A. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 817. Springer, Singapore. https://doi.org/10.1007/978-981-13-1595-4_33
Download citation
DOI: https://doi.org/10.1007/978-981-13-1595-4_33
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-1594-7
Online ISBN: 978-981-13-1595-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)