Skip to main content

A Survey on Pareto-Based EAs to Solve Multi-objective Optimization Problems

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 817))

Abstract

Most of the real-world optimization problems have multiple objectives to deal with. Satisfying one objective at a time may lead to the huge deviation in other. Therefore, an efficient tool is required which can handle multiple objectives simultaneously in order to provide a set of desired solutions. In view of this, multi-objective optimization (MOO) attracts the attention of the researchers since last few decades. Many classical optimization techniques have been proposed by the researchers to solve the multi-objective optimization problems. However mostly, the gradient-based approaches fail to handle complex MOO problems. Hence, as an alternative, researchers have shown their interest toward population-based optimization approaches to solve the MOO problems and come up with convincing results even in the complex environment. Evolutionary algorithms (EAs), which are the first in the group of population-based approach, enjoy almost a decade in providing the solutions to MOO problems. The real challenge is to achieve the set of solutions called Pareto-optimal set. The smooth landing on such set is only possible if there exists diversified solution in the population. Due to the continuous effort, there is a gradual development in the proposition of various efficient Pareto-based approaches in the literature to solve MOEAs. A critical review of those approaches is being carried out in this present study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guliashki, V., Toshev, H., Korsemov, C.: Survey of evolutionary algorithms used in multiobjective optimization. Prob. Eng. Cybernet. Robot. 42–54 (2009)

    Google Scholar 

  2. Elarbi, M., Bechikh, S., Ben Said, L., Datta, R.: Multi-objective optimization: classical and evolutionary approaches. In: Bechikh, S., Datta, R., Gupta, A. (eds.) Recent Advances in Evolutionary Multi-objective Optimization. Adaptation, Learning, and Optimization, p. 20. Springer, Cham (2017)

    Google Scholar 

  3. Schder, J.D.: Some experiments in machine learning using vector evaluated genetic algorithms, Unpublished doctoral dissertation, Vanderbilt University (1984)

    Google Scholar 

  4. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Grefenstette, J. (ed.), Proceedings of an International Conference on Genetic Algorithms and their Applications, pp. 93–100 (1985)

    Google Scholar 

  5. Horn. J., Nafpliotis, N., Goldberg, D.E.: A niched pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol. 1, pp. 67–72. IEEE Service Centre, Piscataway, NJ (1994)

    Google Scholar 

  6. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423 (1993)

    Google Scholar 

  7. Srinivas, N., Deb, K.: Multi-objective function optimization using non-dominated sorting genetic algorithms. Evol. Comput. 2, 221–248 (1994)

    Article  Google Scholar 

  8. Knowles, J.D., Corne, D.W.: The Pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimization. In: CEC’99: Proceedings of the 1999 Congress on Evolutionary Computation, IEEE Service Center, Piscataway, New Jersey (1999)

    Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  10. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

  11. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. Comput. Eng. Netw. Lab. (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, Tech. Rep. 103 (2001)

    Google Scholar 

  12. Kim, M., Hiroyasu, T., Miki, M., Watanabe, S.: SPEA2+ : improving the performance of the strength pareto evolutionary algorithm 2 parallel problem solving from nature—PPSN VIII, pp. 742–751. Springer (2004)

    Google Scholar 

  13. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algorithm for multiobjective optimization. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN VI. LNCS. Springer, Heidelberg, 1917, pp. 839–848 (2000)

    Chapter  Google Scholar 

  14. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-based selection in evolutionary multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001). Morgan Kaufmann, San Francisco, 283–290 (2001)

    Google Scholar 

  15. Li, M., Yang, S., Liu, X., Wang, K.: IPESA-II: improved pareto envelope-based selection algorithm II. In: Purshouse R.C., Fleming P.J., Fonseca C.M., Greco S., Shaw J. (eds.) Evolutionary Multi-Criterion Optimization. EMO 2013. Lecture Notes in Computer Science, vol. 7811. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  16. Deb, K., Mohan, M., Mishra, S.: Evaluating the ε-dominated based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evol. Comput. 13(4), 501–525 (2005)

    Article  Google Scholar 

  17. Tiwari, S., Koch, P., Fadel, G., Deb, K.: AMGA: An archive-based micro genetic algorithm for multi-objective optimization. In: Genetic and Evolutionary Computation Conference (GECCO 2008), pp. 729–736. ACM (2008)

    Google Scholar 

  18. Tiwari, S., Fadel, G., Deb, K.: AMGA2: improving the performance of the archive-based micro-genetic algorithm for multi-objective optimization. Eng. Opt. 371–401, Taylor and Francis (2011)

    Google Scholar 

  19. Nag, K., Pal, T., Pal, N.: ASMiGA: an archive-based steady state micro genetic algorithm. IEEE Trans. Cybern. 45(1), 40–52 (2015)

    Article  Google Scholar 

  20. Praditwong, K., Yao, X.: A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm. In: International Conference on Computational Intelligence and Security, pp. 286–291. IEEE Press (2006)

    Google Scholar 

  21. Lukasiewycz, M.: Opt4J: a modular framework for metaheuristic optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. ACM (2011)

    Google Scholar 

  22. YARPIZ: http://yarpiz.com/category/multiobjective-optimization

  23. MOEA https://sourceforge.net/projects/moeaframework/

  24. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. IEEE Comput. Intelligen. Mag.

    Google Scholar 

  25. http://paradiseo.gforge.inria.fr/

  26. PYTHON https://pypi.python.org/pypi

  27. KANGAL LAB: http://www.iitk.ac.in/kangal/codes.shtml

  28. Horn, J., Nafpliotis, N.: Multiobjective Optimisation Using The Niched Pareto Genetic Algorithm. IlliGAL Report 93005, Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana, Champaign (1994)

    Google Scholar 

  29. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. In: Structural Optimization, New York, Springer, vol. 4, pp. 99–107 (1992)

    Article  Google Scholar 

  30. Eskandari, H., Geiger, C.D., Lamont, G.B.: Fastpga a dynamic population sizing approach for solving expensive multiobjective optimization problems. In: Evolutionary Multiobjective Optimization Conference on EMO, pp. 141–155 (2007)

    Google Scholar 

  31. Kukkonnen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 443–450 (2005)

    Google Scholar 

  32. Karahan, I., Köksalan, M. (2010). A territory defining multiobjective evolutionary algorithm and preference incorporation. IEEE Trans. Evol. Comput. 14(4), 636–664

    Article  Google Scholar 

  33. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets MOEA/D and NSGA-II. IEEE Trans. Evolution. Comput. 12(2), 284–302 (2009)

    Article  Google Scholar 

  34. JMETAL: http://sourceforge.net/projects/jmetal/

  35. Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS: adapting scatter search to multiobjective optimization. IEEE Tans. Evol. Comput. 12(4), 439–453 (2008)

    Article  Google Scholar 

  36. Zhang, Q., Li, Hui: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  37. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guerv´os, J.J., Bullinaria, J.A., Rowe, J.E., Tiˇno, P., Kab´an, A., Schwefel, H.-P. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Google Scholar 

  38. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evolution. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  39. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. European J. Operation. Res. 3, 1653–16 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saykat Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dutta, S., Das, K.N. (2019). A Survey on Pareto-Based EAs to Solve Multi-objective Optimization Problems. In: Bansal, J., Das, K., Nagar, A., Deep, K., Ojha, A. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 817. Springer, Singapore. https://doi.org/10.1007/978-981-13-1595-4_64

Download citation

Publish with us

Policies and ethics