Skip to main content

Assumption Queries Processing of Probabilistic Relational Databases

  • Conference paper
  • First Online:
Computational Intelligence and Intelligent Systems (ISICA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 874))

Included in the following conference series:

  • 709 Accesses

Abstract

Many prevail applications, such as data cleaning, sensor networks, tracking moving objects, emerge an increasing demand for managing uncertain data. Probabilistic relational databases support uncertain data management. Informally, a probabilistic database is a probability distribution over a set of deterministic databases (namely, possible worlds). Assumption queries in probabilistic relational databases have natural and important applications. To avoid unnecessary updates of probabilistic relational databases in existing general methods of assumption queries processing, an optimization method by computing conditional probability is proposed to handle assumption queries. The effectiveness of the optimization strategies for assumption queries is demonstrated in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This research was supported by the Science Project of Department of Water Resources of Zhejiang Province [grant number RC1746]; the National Natural Science Foundation of China [grant number 61762055]; the Jiangxi Provincial Natural Science Foundation of China [grant number 20161BAB202036]; and the Jiangxi Provincial Social Science “13th Five-Year” (2016) Planning Project of China [grant number 16JY19].

References

  1. Ayat, N., Akbarinia, R., Afsarmanesh, H., Valduriez, P.: Entity resolution for probabilistic data. Inf. Sci. 277, 492–511 (2014)

    Article  MathSciNet  Google Scholar 

  2. Škrbić, S., Racković, M., Takači, A.: Prioritized fuzzy logic based information processing in relational databases. Knowl.-Based Syst. 38, 62–73 (2013)

    Article  Google Scholar 

  3. Yang, F.P., Hao, M.I.: Effective image retrieval using texture elements and color fuzzy correlogram. Information 8(1), 27 (2017)

    Article  Google Scholar 

  4. Sen, P., Deshpande, A., Getoor, L.: PrDB: managing and exploiting rich correlations in probabilistic databases. VLDB J. 18(5), 1065–1090 (2009)

    Article  Google Scholar 

  5. Miklau, G., Suciu, D.: A formal analysis of information disclosure in data exchange. J. Comput. Syst. Sci. 73(3), 507–534 (2007)

    Article  MathSciNet  Google Scholar 

  6. Koch, C., Olteanu, D.: Conditioning probabilistic databases. Proc. VLDB Endow. 1(1), 313–325 (2008)

    Article  Google Scholar 

  7. Yue, K., Wu, H., Liu, W., Zhu, Y.: Representing and processing lineages over uncertain data based on the bayesian network. Appl. Soft Comput. 37, 345–362 (2015)

    Article  Google Scholar 

  8. Dalvi, N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt. Commun. ACM 52(7), 86–94 (2009)

    Article  Google Scholar 

  9. Cormode, G., Srivastava, D., Shen, E., Yu, T.: Aggregate query answering on possibilistic data with cardinality constraints. In: The 29th IEEE International Conference on Data Engineering (ICDE), pp. 258–269. IEEE Computer Society, Arlington (2012)

    Google Scholar 

  10. Fink, R., Olteanu, D., Rath, S.: Providing support for full relational algebra in probabilistic databases. In: The 27th IEEE International Conference on Data Engineering (ICDE), pp. 315–326. IEEE Computer Society, Hannover (2011)

    Google Scholar 

  11. Sen, P., Deshpande, A.: Representing and querying correlated tuples in probabilistic databases. In: The 23rd IEEE International Conference on Data Engineering (ICDE), pp. 596–605. IEEE Computer Society, Istanbul (2007)

    Google Scholar 

  12. Aggarwal, C.C.: Trio a system for data uncertainty and lineage. Manag. Min. Uncertain Data 2006, 1151–1154 (2006)

    Google Scholar 

  13. Dan, O., Koch, C., Antova, L.: World-set decompositions: expressiveness and efficient algorithms. Theoret. Comput. Sci. 403(2), 265–284 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Fink, R., Olteanu, D.: Dichotomies for queries with negation in probabilistic databases. ACM Trans. Database Syst. 41(1), 4–47 (2016)

    Article  MathSciNet  Google Scholar 

  15. Tang, R., Cheng, R., Wu, H., Bressan, S.: A framework for conditioning uncertain relational data. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012. LNCS, vol. 7447, pp. 71–87. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32597-7_7

    Chapter  Google Scholar 

  16. Tang, R., Shao, D., Ba, M.L., Wu, H.: Conditioning probabilistic relational data with referential constraints. In: Han, W.-S., Lee, M.L., Muliantara, A., Sanjaya, N.A., Thalheim, B., Zhou, S. (eds.) DASFAA 2014. LNCS, vol. 8505, pp. 413–427. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43984-5_32

    Chapter  Google Scholar 

  17. Zhu, H., Zhang, C., Cao, Z., Tang, R.: On efficient conditioning of probabilistic relational databases. Knowl.-Based Syst. 92, 112–126 (2016)

    Article  Google Scholar 

  18. Soliman, M.A., Ilyas, I.F., Chang, K.C.C.: Probabilistic top-k and ranking-aggregate queries. ACM Trans. Database Syst. (TODS) 33(3), 13–19 (2008)

    Article  Google Scholar 

  19. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Trans. Inf. Syst. (TOIS) 15(1), 32–66 (1997)

    Article  Google Scholar 

  20. Sarma, A.D., Theobald, M., Widom, J.: Exploiting lineage for confidence computation in uncertain and probabilistic databases. In: The 24th IEEE International Conference on Data Engineering, pp. 1023–1032. IEEE Computer Society, Cancun (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongmin Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, C., Cui, Z., Yu, H. (2018). Assumption Queries Processing of Probabilistic Relational Databases. In: Li, K., Li, W., Chen, Z., Liu, Y. (eds) Computational Intelligence and Intelligent Systems. ISICA 2017. Communications in Computer and Information Science, vol 874. Springer, Singapore. https://doi.org/10.1007/978-981-13-1651-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1651-7_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1650-0

  • Online ISBN: 978-981-13-1651-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics