Abstract
Many prevail applications, such as data cleaning, sensor networks, tracking moving objects, emerge an increasing demand for managing uncertain data. Probabilistic relational databases support uncertain data management. Informally, a probabilistic database is a probability distribution over a set of deterministic databases (namely, possible worlds). Assumption queries in probabilistic relational databases have natural and important applications. To avoid unnecessary updates of probabilistic relational databases in existing general methods of assumption queries processing, an optimization method by computing conditional probability is proposed to handle assumption queries. The effectiveness of the optimization strategies for assumption queries is demonstrated in the experiment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This research was supported by the Science Project of Department of Water Resources of Zhejiang Province [grant number RC1746]; the National Natural Science Foundation of China [grant number 61762055]; the Jiangxi Provincial Natural Science Foundation of China [grant number 20161BAB202036]; and the Jiangxi Provincial Social Science “13th Five-Year” (2016) Planning Project of China [grant number 16JY19].
References
Ayat, N., Akbarinia, R., Afsarmanesh, H., Valduriez, P.: Entity resolution for probabilistic data. Inf. Sci. 277, 492–511 (2014)
Škrbić, S., Racković, M., Takači, A.: Prioritized fuzzy logic based information processing in relational databases. Knowl.-Based Syst. 38, 62–73 (2013)
Yang, F.P., Hao, M.I.: Effective image retrieval using texture elements and color fuzzy correlogram. Information 8(1), 27 (2017)
Sen, P., Deshpande, A., Getoor, L.: PrDB: managing and exploiting rich correlations in probabilistic databases. VLDB J. 18(5), 1065–1090 (2009)
Miklau, G., Suciu, D.: A formal analysis of information disclosure in data exchange. J. Comput. Syst. Sci. 73(3), 507–534 (2007)
Koch, C., Olteanu, D.: Conditioning probabilistic databases. Proc. VLDB Endow. 1(1), 313–325 (2008)
Yue, K., Wu, H., Liu, W., Zhu, Y.: Representing and processing lineages over uncertain data based on the bayesian network. Appl. Soft Comput. 37, 345–362 (2015)
Dalvi, N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt. Commun. ACM 52(7), 86–94 (2009)
Cormode, G., Srivastava, D., Shen, E., Yu, T.: Aggregate query answering on possibilistic data with cardinality constraints. In: The 29th IEEE International Conference on Data Engineering (ICDE), pp. 258–269. IEEE Computer Society, Arlington (2012)
Fink, R., Olteanu, D., Rath, S.: Providing support for full relational algebra in probabilistic databases. In: The 27th IEEE International Conference on Data Engineering (ICDE), pp. 315–326. IEEE Computer Society, Hannover (2011)
Sen, P., Deshpande, A.: Representing and querying correlated tuples in probabilistic databases. In: The 23rd IEEE International Conference on Data Engineering (ICDE), pp. 596–605. IEEE Computer Society, Istanbul (2007)
Aggarwal, C.C.: Trio a system for data uncertainty and lineage. Manag. Min. Uncertain Data 2006, 1151–1154 (2006)
Dan, O., Koch, C., Antova, L.: World-set decompositions: expressiveness and efficient algorithms. Theoret. Comput. Sci. 403(2), 265–284 (2008)
Fink, R., Olteanu, D.: Dichotomies for queries with negation in probabilistic databases. ACM Trans. Database Syst. 41(1), 4–47 (2016)
Tang, R., Cheng, R., Wu, H., Bressan, S.: A framework for conditioning uncertain relational data. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012. LNCS, vol. 7447, pp. 71–87. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32597-7_7
Tang, R., Shao, D., Ba, M.L., Wu, H.: Conditioning probabilistic relational data with referential constraints. In: Han, W.-S., Lee, M.L., Muliantara, A., Sanjaya, N.A., Thalheim, B., Zhou, S. (eds.) DASFAA 2014. LNCS, vol. 8505, pp. 413–427. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43984-5_32
Zhu, H., Zhang, C., Cao, Z., Tang, R.: On efficient conditioning of probabilistic relational databases. Knowl.-Based Syst. 92, 112–126 (2016)
Soliman, M.A., Ilyas, I.F., Chang, K.C.C.: Probabilistic top-k and ranking-aggregate queries. ACM Trans. Database Syst. (TODS) 33(3), 13–19 (2008)
Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Trans. Inf. Syst. (TOIS) 15(1), 32–66 (1997)
Sarma, A.D., Theobald, M., Widom, J.: Exploiting lineage for confidence computation in uncertain and probabilistic databases. In: The 24th IEEE International Conference on Data Engineering, pp. 1023–1032. IEEE Computer Society, Cancun (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, C., Cui, Z., Yu, H. (2018). Assumption Queries Processing of Probabilistic Relational Databases. In: Li, K., Li, W., Chen, Z., Liu, Y. (eds) Computational Intelligence and Intelligent Systems. ISICA 2017. Communications in Computer and Information Science, vol 874. Springer, Singapore. https://doi.org/10.1007/978-981-13-1651-7_32
Download citation
DOI: https://doi.org/10.1007/978-981-13-1651-7_32
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-1650-0
Online ISBN: 978-981-13-1651-7
eBook Packages: Computer ScienceComputer Science (R0)