Skip to main content

Reservoir Computing for Forecasting Large Spatiotemporal Dynamical Systems

  • Chapter
  • First Online:
Reservoir Computing

Part of the book series: Natural Computing Series ((NCS))

Abstract

Forecasting of spatiotemporal chaotic dynamical systems is an important problem in several scientific fields. Crucial scientific applications such as weather forecasting and climate modeling depend on the ability to effectively model spatiotemporal chaotic geophysical systems such as the atmosphere and oceans. Recent advances in the field of machine learning have the potential to be an important tool for modeling such systems. In this chapter, we review several key ideas and discuss some reservoir-computing-based architectures for purely data-driven as well as hybrid data-assisted forecasting of chaotic systems with an emphasis on scalability to large, high-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • H. Abarbanel, Analysis of Observed Chaotic Data (Springer Science & Business Media, 2012)

    Google Scholar 

  • V. Afraimovich, N. Verichev, M.I. Rabinovich, Radiophys. Quantum Electron. 29, 795 (1986)

    Article  Google Scholar 

  • S.L. Brunton, J.L. Proctor, J.N. Kutz, Proc. Natl. Acad. Sci. 201517384 (2016)

    Google Scholar 

  • S. Hochreiter, J. Schmidhuber, Neural Comput. 9, 1735 (1997)

    Article  Google Scholar 

  • H. Jaeger, GMD Technical report 148, 13. German National Research Center for Information Technology, Bonn, Germany (2001)

    Google Scholar 

  • H. Jaeger, H. Haas, Science 304, 78 (2004)

    Article  Google Scholar 

  • H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, vol. 7 (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  • A. Karimi, M.R. Paul, Chaos: Interdiscipl. J. Nonlinear Sci. 20, 043105 (2010)

    Article  Google Scholar 

  • A.-K. Kassam, L.N. Trefethen, SIAM J. Sci. Comput. 26, 1214 (2005)

    Article  MathSciNet  Google Scholar 

  • L. Kocarev, U. Parlitz, Phys. Rev. Lett. 76, 1816 (1996)

    Article  Google Scholar 

  • E.N. Lorenz, in Proceedings of Seminar on Predictability, vol. 1 (1996)

    Google Scholar 

  • Z. Lu, B.R. Hunt, E. Ott, Chaos: Interdiscip. J. Nonlinear Sci. 28, 061104 (2018)

    Article  Google Scholar 

  • B. Lusch, J.N. Kutz, S.L. Brunton, Nat. Ccommun. 9, 4950 (2018)

    Article  Google Scholar 

  • E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  • E. Ott, T. Sauer, J.A. Yorke, Wiley Series in Nonlinear Science (Wiley, New York, 1994)

    Google Scholar 

  • J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, Phys. Rev. Lett. 120, 024102 (2018a)

    Google Scholar 

  • J. Pathak, A. Wikner, R. Fussell, S. Chandra, B.R. Hunt, M. Girvan, E. Ott, Chaos: Interdiscip. J. Nonlinear Sci. 28, 041101 (2018b)

    Google Scholar 

  • L. Pecora T. Carroll, J. Heagy, Handbook of Chaos Control, vol. 227 (1999)

    Google Scholar 

  • M. Raissi, P. Perdikaris, G. Karniadakis, J. Comput. Phys. 378, 686 (2019)

    Article  MathSciNet  Google Scholar 

  • N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D. Abarbanel, Phys. Rev. E 51, 980 (1995)

    Article  Google Scholar 

  • T. Sauer, J.A. Yorke, M. Casdagli, J. Stat. Phys. 65, 579 (1991)

    Article  Google Scholar 

  • P.R. Vlachas, W. Byeon, Z.Y. Wan, T.P. Sapsis, P. Koumoutsakos, Proc. R. Soc. A 474, 20170844 (2018)

    Article  Google Scholar 

  • Z.Y. Wan, P. Vlachas, P. Koumoutsakos, T. Sapsis, PloS One 13, e0197704 (2018)

    Article  Google Scholar 

  • A. Wikner J. Pathak, B. Hunt, M. Girvan, T. Arcomano, I. Szunyogh, A. Pomerance, E. Ott, Combining machine learning with knowledge-based modeling for scalable forecasting and subgrid-scale closure of large, complex, spatiotemporal systems (2020), arXiv:2002.05514 [cs.LG]

  • R.S. Zimmermann, U. Parlitz, Chaos: Interdiscip. J. Nonlinear Sci. 28, 043118 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We thank our colleagues, particularly Brian Hunt, Michelle Girvan, and Istvan Szunyogh, for their contributions. We also acknowledge support from DARPA contract HR00111890044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaideep Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, J., Ott, E. (2021). Reservoir Computing for Forecasting Large Spatiotemporal Dynamical Systems. In: Nakajima, K., Fischer, I. (eds) Reservoir Computing. Natural Computing Series. Springer, Singapore. https://doi.org/10.1007/978-981-13-1687-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1687-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1686-9

  • Online ISBN: 978-981-13-1687-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics