Skip to main content

A New Framework for Metaheuristic Search Based on Animal Foraging

  • Conference paper
  • First Online:
Proceedings of the International Conference on Data Engineering 2015 (DaEng-2015)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 520))

  • 363 Accesses

Abstract

In this paper, a new framework for metaheuristic search for global optimization is introduced. It is suitable for continuous nonlinear optimization problems. This framework is mimicking the seal pup behavior and its ability to search and choose the best lair to escape from predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy everytime consists of searching and selecting the best lair. For that, the seal pup performs a random walk to find a new lair. Stimulated by the sensitive nature of seals against external noise, the random walk is based on two search modes, normal mode and urgent mode. In normal mode, the pup moves between closely adjacent lairs via a Brownian walk. In urgent mode, the pup leaves the proximity area far away and performs a Levy walk to find a new lair from sparse targets. The switch between these two modes is realized by the random noise emitted by predators. The proposed framework can efficiently mimic seal pups behavior to find best location and provide a new approach to be used in global optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Srinivas, M., Patnaik, M.L.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994)

    Article  Google Scholar 

  2. Kennedy, J., Eberhart, R.: Proceedings of IEEE International Conference on Particle swarm optimization, in Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  3. Yang, X.S., Deb, S.: Cuckoo search: recent advances and applications. Neural Comput. Appl. 24, 169–174 (2014)

    Article  Google Scholar 

  4. Knysh, D.S., Kureichik, V.M.: Parallel genetic algorithms: a survey and problem state of the art. J. Comput. Syst. Sci. Int. 49(4), 579–589 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press (1999)

    Google Scholar 

  6. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 26–308 (2003)

    Article  Google Scholar 

  7. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)

    Article  Google Scholar 

  8. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on metaheuristics for stochastic combinatorial optimization. Nat. Comput. 8(2), 239–287 (2009)

    Article  MathSciNet  Google Scholar 

  9. Alba, E., Luque, G.: Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)

    Article  Google Scholar 

  10. Yang, X.S., Deb, S.: Cuckoo Search via levy flights. In: World Congress Nature & Biologically Inspired Computing. NaBIC 2009, pp. 210–214 (2009)

    Google Scholar 

  11. Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier, Oxford. ISBN 9780124167438 (2014)

    Google Scholar 

  12. Beyer, H.G., Schwefel, H.P.: Evolution strategies: a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  Google Scholar 

  13. Blackwell, T.: Particle Swarm Optimization in Dynamic Environments, pp. 2–49. Springer, Berlin (2007)

    Google Scholar 

  14. Saadi, Y., Binti Hashim, R., Abdul-Kahar, R.: Ant colony matching: a curve evolution approach. In: 8th International Conference on Computing and Networking Technology (ICCNT), pp. 230–234 (2012)

    Google Scholar 

  15. Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in local search for vehicle routing. J. Heuristics 1(1), 147–167 (1995)

    Article  Google Scholar 

  16. Le Boeuf, B.J., Crocker, D.E., Grayson, J., Gedamke, J., Webb, P.M., Blackwell, S.B., Costa, D.P.: Respiration and heart rate at the surface between dives in northern elephant seals. J. Exp. Biol. 203(Pt 21), 3265 (2000)

    Google Scholar 

  17. Pilfold, N.W., Derocher, A.E., Stirling, I., Richardson, E., Andriashek, D.: Age and sex composition of seals killed by polar bears in the eastern Beaufort Sea. PLoS ONE 7(7), e41429 (2012)

    Article  Google Scholar 

  18. Hammill, M.O.: Smith, T.G.: The role of predation in the ecology of the ringed seal in barrow strait, northwest territories, Canada. Marine Mammal Sci. 7(2), 123–135 (1991)

    Article  Google Scholar 

  19. Williams, M.T., Nations, C.S., Smith, T.G., Moulton, V.D., Perham, C.J.: Ringed Seal (Phoca hispida) use of Subnivean structures in the Alaskan Beaufort sea during development of an oil production facility. Aquatic Mammals 32(3), 311–324 (2006)

    Google Scholar 

  20. Gjertz, I.A.N., Lydersen, C.: Polar bear predation on ringed seals in the fast-ice of Hornsund, Svalbard. Polar Res. 4(1), 65–68 (1986)

    Article  Google Scholar 

  21. Kovacs, K.M., Lydersen, C., Gjertz, I.: Birth-site characteristics and prenatal molting in bearded seals (Erignathus barbatus). J. Mammal 77, 1085 (1996)

    Article  Google Scholar 

  22. Pilfold, N.W., Derocher, A.E., Stirling, I., Richardson, E.: Polar bear predatory behaviour reveals seascape distribution of ringed seal lairs. Popul. Ecol. 56(1), 129–138 (2014)

    Article  Google Scholar 

  23. Lydersen, C., Gjertz, I.A.N.: Studies of the ringed seal (Phoca hispida Schreber 1775) in its breeding habitat in Kongsfjorden, Svalbard. Polar Res. 4(1), 57–63 (1986)

    Article  Google Scholar 

  24. Kunnasranta, M., Hyvärinen, H., Sipilä, T., Medvedev, N.: Breeding habitat and lair structure of the ringed seal (Phoca hispida ladogensis) in northern Lake Ladoga in Russia. Polar Biol. 24(3), 171–174 (2001)

    Article  Google Scholar 

  25. Robert, B.U.G.A.: Ringed seal pupping lair, with the pup in the lair and the female approaching the haul-out hole from the water (2007) http://www.grida.no/graphicslib/detail/ringed-seal-pupping-lair-with-the-pup-in-the-lair-and-the-female-approaching-the-haul-out-hole-from-the-water_9d12

  26. Ito, H., Uehara, T., Morita, S., Tainaka, K.I., Yoshimura, J.: Foraging behavior in stochastic environments. J. Ethol. 31(1), 23–28 (2013)

    Article  Google Scholar 

  27. Bartumeus, F., Raposo, E.P., Viswanathan, G.M., da Luz, M.G.E.: Stochastic optimal foraging: tuning intensive and extensive dynamics in random searches. PLoS ONE 9(9), e106373 (2014)

    Article  Google Scholar 

  28. Nurzaman, S.G., Matsumoto, Y., Nakamura, Y., Shirai, K., Koizumi, S., Ishiguro, H.: From Lévy to Brownian: a computational model based on biological fluctuation. PLoS ONE 6(2), e16168 (2011)

    Article  Google Scholar 

  29. Dees, N.D.: The role of stochastic resonance and physical constraints in the evolution of foraging strategy. ProQuest, UMI Dissertations Publishing (2009)

    Google Scholar 

  30. Viswanathan, G.M.: The physics of foraging: an introduction to random searches and biological encounters. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  31. Southall, E.J., Hays, G.C., Brunnschweiler, J.M., Jones, C.S., Dyer, J.R.M., Doyle, T.K., Schaefer, K.M., Sims, D.W., Fuller, D.W., Pade, N.G., Humphries, N.E., Queiroz, N., Houghton, J.D.R., Musyl, M.K., Noble, L.R., Wearmouth, V.J.: Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465(7301), 1066–1069 (2010)

    Article  Google Scholar 

  32. Sims, D.W., Humphries, N.E., Bradford, R.W., Bruce, B.D.: Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. J. Anim. Ecol. 81(2), 432–442 (2012)

    Article  Google Scholar 

  33. Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G., Raposo, E.P., Stanley, H.E.: Optimizing the success of random searches. Nature 401(6756), 911–914 (1999)

    Article  Google Scholar 

  34. Bartumeus, F., Catalan, J., Fulco, U.L., Lyra, M.L., Viswanathan, G.M.: Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies. Phys. Rev. Lett. 88(9), 097901 (2002)

    Article  Google Scholar 

  35. Yanagida, T., Ueda, M., Murata, T., Esaki, S., Ishii, Y.: Brownian motion, fluctuation and life. BioSystems 88(3), 228–242 (2007)

    Article  Google Scholar 

  36. Kashiwagi, A., Urabe, I., Kaneko, K., Yomo, T.: Adaptive response of a gene network to environmental changes by fitness-induced attractor selection. PLoS ONE 1(1), e49 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by University of Malaya High Impact Research Grant no vote UM.C/625/HIR/MOHE/SC/13/2 from Ministry of Higher Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Saadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saadi, Y., Yanto, I.T.R., Sutoyo, E., Mungad, M., Chiroma, H., Herawan, T. (2019). A New Framework for Metaheuristic Search Based on Animal Foraging. In: Abawajy, J., Othman, M., Ghazali, R., Deris, M., Mahdin, H., Herawan, T. (eds) Proceedings of the International Conference on Data Engineering 2015 (DaEng-2015) . Lecture Notes in Electrical Engineering, vol 520. Springer, Singapore. https://doi.org/10.1007/978-981-13-1799-6_19

Download citation

Publish with us

Policies and ethics