Abstract
In this paper, a new framework for metaheuristic search for global optimization is introduced. It is suitable for continuous nonlinear optimization problems. This framework is mimicking the seal pup behavior and its ability to search and choose the best lair to escape from predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy everytime consists of searching and selecting the best lair. For that, the seal pup performs a random walk to find a new lair. Stimulated by the sensitive nature of seals against external noise, the random walk is based on two search modes, normal mode and urgent mode. In normal mode, the pup moves between closely adjacent lairs via a Brownian walk. In urgent mode, the pup leaves the proximity area far away and performs a Levy walk to find a new lair from sparse targets. The switch between these two modes is realized by the random noise emitted by predators. The proposed framework can efficiently mimic seal pups behavior to find best location and provide a new approach to be used in global optimization problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Srinivas, M., Patnaik, M.L.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994)
Kennedy, J., Eberhart, R.: Proceedings of IEEE International Conference on Particle swarm optimization, in Neural Networks, vol. 4, pp. 1942–1948 (1995)
Yang, X.S., Deb, S.: Cuckoo search: recent advances and applications. Neural Comput. Appl. 24, 169–174 (2014)
Knysh, D.S., Kureichik, V.M.: Parallel genetic algorithms: a survey and problem state of the art. J. Comput. Syst. Sci. Int. 49(4), 579–589 (2010)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press (1999)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 26–308 (2003)
Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)
Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on metaheuristics for stochastic combinatorial optimization. Nat. Comput. 8(2), 239–287 (2009)
Alba, E., Luque, G.: Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)
Yang, X.S., Deb, S.: Cuckoo Search via levy flights. In: World Congress Nature & Biologically Inspired Computing. NaBIC 2009, pp. 210–214 (2009)
Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier, Oxford. ISBN 9780124167438 (2014)
Beyer, H.G., Schwefel, H.P.: Evolution strategies: a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)
Blackwell, T.: Particle Swarm Optimization in Dynamic Environments, pp. 2–49. Springer, Berlin (2007)
Saadi, Y., Binti Hashim, R., Abdul-Kahar, R.: Ant colony matching: a curve evolution approach. In: 8th International Conference on Computing and Networking Technology (ICCNT), pp. 230–234 (2012)
Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in local search for vehicle routing. J. Heuristics 1(1), 147–167 (1995)
Le Boeuf, B.J., Crocker, D.E., Grayson, J., Gedamke, J., Webb, P.M., Blackwell, S.B., Costa, D.P.: Respiration and heart rate at the surface between dives in northern elephant seals. J. Exp. Biol. 203(Pt 21), 3265 (2000)
Pilfold, N.W., Derocher, A.E., Stirling, I., Richardson, E., Andriashek, D.: Age and sex composition of seals killed by polar bears in the eastern Beaufort Sea. PLoS ONE 7(7), e41429 (2012)
Hammill, M.O.: Smith, T.G.: The role of predation in the ecology of the ringed seal in barrow strait, northwest territories, Canada. Marine Mammal Sci. 7(2), 123–135 (1991)
Williams, M.T., Nations, C.S., Smith, T.G., Moulton, V.D., Perham, C.J.: Ringed Seal (Phoca hispida) use of Subnivean structures in the Alaskan Beaufort sea during development of an oil production facility. Aquatic Mammals 32(3), 311–324 (2006)
Gjertz, I.A.N., Lydersen, C.: Polar bear predation on ringed seals in the fast-ice of Hornsund, Svalbard. Polar Res. 4(1), 65–68 (1986)
Kovacs, K.M., Lydersen, C., Gjertz, I.: Birth-site characteristics and prenatal molting in bearded seals (Erignathus barbatus). J. Mammal 77, 1085 (1996)
Pilfold, N.W., Derocher, A.E., Stirling, I., Richardson, E.: Polar bear predatory behaviour reveals seascape distribution of ringed seal lairs. Popul. Ecol. 56(1), 129–138 (2014)
Lydersen, C., Gjertz, I.A.N.: Studies of the ringed seal (Phoca hispida Schreber 1775) in its breeding habitat in Kongsfjorden, Svalbard. Polar Res. 4(1), 57–63 (1986)
Kunnasranta, M., Hyvärinen, H., Sipilä, T., Medvedev, N.: Breeding habitat and lair structure of the ringed seal (Phoca hispida ladogensis) in northern Lake Ladoga in Russia. Polar Biol. 24(3), 171–174 (2001)
Robert, B.U.G.A.: Ringed seal pupping lair, with the pup in the lair and the female approaching the haul-out hole from the water (2007) http://www.grida.no/graphicslib/detail/ringed-seal-pupping-lair-with-the-pup-in-the-lair-and-the-female-approaching-the-haul-out-hole-from-the-water_9d12
Ito, H., Uehara, T., Morita, S., Tainaka, K.I., Yoshimura, J.: Foraging behavior in stochastic environments. J. Ethol. 31(1), 23–28 (2013)
Bartumeus, F., Raposo, E.P., Viswanathan, G.M., da Luz, M.G.E.: Stochastic optimal foraging: tuning intensive and extensive dynamics in random searches. PLoS ONE 9(9), e106373 (2014)
Nurzaman, S.G., Matsumoto, Y., Nakamura, Y., Shirai, K., Koizumi, S., Ishiguro, H.: From Lévy to Brownian: a computational model based on biological fluctuation. PLoS ONE 6(2), e16168 (2011)
Dees, N.D.: The role of stochastic resonance and physical constraints in the evolution of foraging strategy. ProQuest, UMI Dissertations Publishing (2009)
Viswanathan, G.M.: The physics of foraging: an introduction to random searches and biological encounters. Cambridge University Press, Cambridge (2011)
Southall, E.J., Hays, G.C., Brunnschweiler, J.M., Jones, C.S., Dyer, J.R.M., Doyle, T.K., Schaefer, K.M., Sims, D.W., Fuller, D.W., Pade, N.G., Humphries, N.E., Queiroz, N., Houghton, J.D.R., Musyl, M.K., Noble, L.R., Wearmouth, V.J.: Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465(7301), 1066–1069 (2010)
Sims, D.W., Humphries, N.E., Bradford, R.W., Bruce, B.D.: Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. J. Anim. Ecol. 81(2), 432–442 (2012)
Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G., Raposo, E.P., Stanley, H.E.: Optimizing the success of random searches. Nature 401(6756), 911–914 (1999)
Bartumeus, F., Catalan, J., Fulco, U.L., Lyra, M.L., Viswanathan, G.M.: Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies. Phys. Rev. Lett. 88(9), 097901 (2002)
Yanagida, T., Ueda, M., Murata, T., Esaki, S., Ishii, Y.: Brownian motion, fluctuation and life. BioSystems 88(3), 228–242 (2007)
Kashiwagi, A., Urabe, I., Kaneko, K., Yomo, T.: Adaptive response of a gene network to environmental changes by fitness-induced attractor selection. PLoS ONE 1(1), e49 (2006)
Acknowledgements
This work is supported by University of Malaya High Impact Research Grant no vote UM.C/625/HIR/MOHE/SC/13/2 from Ministry of Higher Education Malaysia.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Saadi, Y., Yanto, I.T.R., Sutoyo, E., Mungad, M., Chiroma, H., Herawan, T. (2019). A New Framework for Metaheuristic Search Based on Animal Foraging. In: Abawajy, J., Othman, M., Ghazali, R., Deris, M., Mahdin, H., Herawan, T. (eds) Proceedings of the International Conference on Data Engineering 2015 (DaEng-2015) . Lecture Notes in Electrical Engineering, vol 520. Springer, Singapore. https://doi.org/10.1007/978-981-13-1799-6_19
Download citation
DOI: https://doi.org/10.1007/978-981-13-1799-6_19
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-1797-2
Online ISBN: 978-981-13-1799-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)