Skip to main content

Paroxysmal Atrial Fibrillation Onset Prediction Using Heart Rate Variability Analysis and Genetic Algorithm for Optimization

  • Conference paper
  • First Online:
Proceedings of the International Conference on Data Engineering 2015 (DaEng-2015)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 520))

  • 354 Accesses

Abstract

A prediction algorithm for paroxysmal atrial fibrillation (PAF) is proposed. The algorithm is based on heart rate variability (HRV) analysis of Electrocardiogram (ECG) signal. Genetic Algorithm (GA) is applied to simultaneously optimize the HRV feature subset and parameter tuning of the classifier in the algorithm. Experimental result shows, with single hold-out validation, the proposed algorithm achieve prediction accuracy of 92.9%, with 96.4% sensitivity and 89.4% specificity. With a 10-fold cross validation, which give truer indication of our classifier generalization capability, the proposed algorithm obtain 86.8% of accuracy and the feature subset count is minimized to only 13. These results almost outperform most previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Camm, A.J., et al.: Guidelines for the management of atrial fibrillation The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur. Heart J. 31 (2010)

    Google Scholar 

  2. Prakash, A., Saksena, S., Hill, M., Krol, R.B., Munsif, A.N., Giorgberidze, I., Mathew, P., Mehra, R.: Acute effects of dual site right atrial pacing in patients with spontaneous and inducible atrial flutter and fibrillation. J. Am. Coll. Cardiol. 29(5), 1007–1014 (1997)

    Article  Google Scholar 

  3. Prystowsky, N.: Management of atrial fibrillation: therapeutic options and clinical decisions. Am. J. Cardiol. 85(10A), 3D–11D.E (2000)

    Article  Google Scholar 

  4. Thong, T., McNames, J., Aboy, M., Goldstein, B.: Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes. IEEE Trans. Biomed. Eng. 51(4), 561–569 (2004)

    Article  Google Scholar 

  5. Lynn, K.S., Chiang, H.D.: A two-stage solution algorithm for paroxysmal atrial fibrillation. In: Proceedings of the Computers in Cardiology, pp. 405–407 (2001)

    Google Scholar 

  6. Yang, A.C.C., Yin, H.W.: Prediction of paroxysmal atrial fibrillation by foot print analysis. In: Proceedings of the Computers in Cardiology, pp. 401–404 (2001)

    Google Scholar 

  7. Chesnokov, Y.V.: Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods. Artif. Intell. Med. 43(2), 151–165 (2008)

    Article  Google Scholar 

  8. Mohebbi, M., Ghassemian, H.: Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of heart rate variability signal. Comput. Methods Programs Biomed. 105 (2012) Elsevier

    Google Scholar 

  9. Costin, H., Rotariu, C., Pasarica, A.: Atrial fibrillation onset prediction using variability of ECG signals. In: 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), pp. 1, 4, 23–25 (2013)

    Google Scholar 

  10. Chang, C.-C. Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2:27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

    Article  Google Scholar 

  11. Bengio, Yoshua, Grandvalet, Yves: No unbiased estimator of the variance of K-fold cross-validation. J. Mach. Learn. Res. 5, 1089–1105 (2004)

    MathSciNet  MATH  Google Scholar 

  12. İşler, Y., Kuntalp, M.: Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure. Comput. Biol. Med. 37(10), 1502–1510 (2007). ISSN 0010-4825

    Article  Google Scholar 

  13. Yu, S.-N., Lee, M.-Y.: Bispectral analysis and genetic algorithm for congestive heart failure recognition based on heart rate variability. Comput. Biol. Med. 42(8), 816–825 (2012). ISSN 0010-4825

    Article  Google Scholar 

  14. Saeys, Y., Inza, I., Larranaga, P.: A review of feature selection techniques in bioinformatics. Oxford J. Bioinform. 23(19), 2507–2517 (2007)

    Google Scholar 

  15. Huang, C.-L. Wang, C.-J.: A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31(2), 231–240 (2006). ISSN 0957-4174

    Article  Google Scholar 

  16. Physionet AFPDB Database, http://www.physionet.org/physiobank/database/afpdb

  17. Pan, J., Tompkins, W.J.: A real time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)

    Article  Google Scholar 

  18. Rajendra Acharya, U., et al.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44(12), 1031–1051 (2006)

    Article  Google Scholar 

  19. Nikias, C.L., Raghuveer, M.R.: Bispectrum estimation: a digital signal processing framework. Proc. IEEE 75(7), 869, 891 (1987)

    Article  Google Scholar 

  20. Zhou, S.-M., Gan, J.Q., Sepulveda, F.: Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface. Inf. Sci. 178(6), 1629–1640 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Universiti Teknologi Malaysia (UTM) and the Ministry of Science, Tech. & Innovation of Malaysia (MOSTI) under the TechnoFund Grant No. 3H001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khang Hua Boon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boon, K.H., Khalil-Hani, M., Sia, C.W. (2019). Paroxysmal Atrial Fibrillation Onset Prediction Using Heart Rate Variability Analysis and Genetic Algorithm for Optimization. In: Abawajy, J., Othman, M., Ghazali, R., Deris, M., Mahdin, H., Herawan, T. (eds) Proceedings of the International Conference on Data Engineering 2015 (DaEng-2015) . Lecture Notes in Electrical Engineering, vol 520. Springer, Singapore. https://doi.org/10.1007/978-981-13-1799-6_62

Download citation

Publish with us

Policies and ethics