Skip to main content

Texture Image Retrieval Based on Block Level Directional Local Extrema Patterns Using Tetrolet Transform

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 905))

Included in the following conference series:

Abstract

This paper introduces a novel texture image retrieval technique based on block level processing using Tetrolet and optimized directional local extrema patterns. Texture image categorization is performed for uniform and non-uniform distribution of the intensities within the image. Texture features are extracted by using Tetrolet transform and directional local extrema pattern. Image is processed at block level for extracting these features. The main concept of this approach is to analyze the image at block level to get better results in retrieval process. During image search, each block is compared with the corresponding block of another image. Categorization of the images reduces the search space. Proposed approach uses spatial and spectral domain analysis of the image. Performance of proposed retrieval system is tested on the Brodatz and VisTex benchmark databases. Retrieval results show that the proposed technique performs better in terms of average retrieval rate in comparison to other state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Commun. Pure Appl. Math. 57, 219–266 (2004)

    Article  Google Scholar 

  2. Chang, S.K., Hsu, A.: Image information systems, where do we go from here? IEEE Trans. Knowl. Data Eng. 4, 431–442 (1992)

    Article  Google Scholar 

  3. Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized Gaussian density and Kullback-leibler distance. IEEE Trans. Image Process. 11, 146–158 (2002)

    Article  MathSciNet  Google Scholar 

  4. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14, 2091–2106 (2005)

    Article  Google Scholar 

  5. Long, F., Zhang, H., Feng, D.D.: Fundamentals of content-based image retrieval. In: Feng, D.D., Siu, W.C., Zhang, H.J. (eds.) Multimedia Information Retrieval and Management. SCT, pp. 1–26. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05300-3_1

    Google Scholar 

  6. Golomb, S.W.: Polyominoes: puzzles, patterns, problems, and packings, 2nd edn. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  7. Pi, M.H., Tong, C.S., Choy, S.K., Hong, Z.: A fast and effective model for wavelet subband histograms and its application in texture image retrieval. IEEE Trans. Image Process. (2006). https://doi.org/10.1109/tip.2006.877509

    Article  Google Scholar 

  8. Jain, P., Tyagi, V.: An adaptive edge preserving image denoising technique using Tetrolet transform. Vis. Comput. 31, 657–674 (2015)

    Article  Google Scholar 

  9. Kokare, M., Biswas, P.K., Chatterji, B.N.: Rotation invariant texture image retrieval using rotated complex wavelet filters. IEEE Trans. Syst., Man Cybern., Part-B. 36, 1273–1282 (2006)

    Article  Google Scholar 

  10. Krommweh, J.: Tetrolet transform: a new adaptive Haar wavelet algorithm for sparse image representation. J. Vis. Commun. Image Represent. 21, 364–374 (2010)

    Article  Google Scholar 

  11. Lasmar, N.-E., Berthoumieu, Y.: Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms. IEEE Trans. Image Process. 23, 2246–2261 (2014)

    Article  MathSciNet  Google Scholar 

  12. Heikkil, M., Pietikainen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognit. 42, 425–436 (2009)

    Article  Google Scholar 

  13. Malik, F., Baharudin, B.: Analysis of distance metrics in content-based image retrieval using statistical quantized histogram texture features in the DCT domain. J. King Saud Univ. Comput. Inf. Sci. 25, 207–218 (2013)

    Article  Google Scholar 

  14. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18, 837–842 (1996)

    Article  Google Scholar 

  15. Mao, J., Jain, A.K.: Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognit. 25, 173–188 (1992)

    Article  Google Scholar 

  16. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 291, 51–59 (1996)

    Article  Google Scholar 

  17. Raghuwanshi, G., Tyagi, V.: Texture image retrieval using adaptive Tetrolet transforms. Digit. Signal Process. 48, 50–57 (2016)

    Article  MathSciNet  Google Scholar 

  18. Reddy, A.H, Chandra, N.S.: Local oppugnant color space extrema patterns for content based natural and texture image retrieval. Int. J. Electron. Commun. (AEÜ) 69, 290–298 (2015)

    Article  Google Scholar 

  19. Takala, V., Ahonen, T., Pietikäinen, M.: Block-based methods for image retrieval using local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 882–891. Springer, Heidelberg (2005). https://doi.org/10.1007/11499145_89

    Chapter  Google Scholar 

  20. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)

    Article  Google Scholar 

  21. Murala, S., Maheshwari, R.P., Balasubramanian, R.: Directional local extrema patterns: a new descriptor for content based image Retr. Int. J. Multimed. Inf. Retrieval 1, 191–203 (2012)

    Article  Google Scholar 

  22. Kingsbury, N.G.: Image processing with complex wavelet. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 357, 2543–2560 (1999)

    Google Scholar 

  23. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1996)

    Google Scholar 

  24. Murala, S., Maheshwari, R.P., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21, 2874–2886 (2012)

    Article  MathSciNet  Google Scholar 

  25. Vikhar, P.A.: Content-based image retrieval (CBIR) State-of-the-art and future scope of research. IUP J. Inf. Technol. 6(2), 64–84 (2010)

    Google Scholar 

  26. Rui, Y., Huang, T.S.: Image retrieval: current techniques, promising directions, and open issues. J. Vis. Commun. Image Represent. 10, 39–62 (1999)

    Article  Google Scholar 

  27. Shyu, C.R., Brodley, C.E., Kak, A.C., Kosaka, A., Broderick, A.L.: Local versus global features for content based image retrieval. In: IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 30–34 (1998)

    Google Scholar 

  28. Vassilieva, N.S.: Content-based image retrieval methods. Program. Comput. Softw. 35, 158–180 (2009)

    Article  MathSciNet  Google Scholar 

  29. Velisavljevic, V., Beferull-Lozano, B., Vetterli, M., Dragotti, P.L.: Directionlets: anisotropic multi-directional representation with separable filtering. IEEE Trans. Image Process. 17, 1916–1933 (2006)

    Article  Google Scholar 

  30. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1349–1380 (2000)

    Article  Google Scholar 

  31. Yao, C.-H., Chen, S.-Y.: Retrieval of translated, rotated and scaled color textures. Pattern Recognit. 36, 913–929 (2003)

    Article  Google Scholar 

  32. Yao, T., Mei, T., Ngo, C.: Co-reranking by mutual reinforcement for image search. In: Proceedings of the ACM International Conference on Image and Video Retrieval, CIVR 2010, pp. 34–41 (2010). https://doi.org/10.1145/1816041.1816048

  33. http://sipi.usc.edu/database/

  34. http://vismod.media.mit.edu/pub/VisTex/VisTex.tar.gz

  35. Tyagi, V.: Content-Based Image Retrieval. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6759-4

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Tyagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raghuwanshi, G., Tyagi, V. (2018). Texture Image Retrieval Based on Block Level Directional Local Extrema Patterns Using Tetrolet Transform. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T. (eds) Advances in Computing and Data Sciences. ICACDS 2018. Communications in Computer and Information Science, vol 905. Springer, Singapore. https://doi.org/10.1007/978-981-13-1810-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1810-8_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1809-2

  • Online ISBN: 978-981-13-1810-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics