Skip to main content

An Importance-and-Semantics-Aware Approach for Entity Resolution Using MLP

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 901))

  • 1607 Accesses

Abstract

Entity resolution (ER), as the process of identifying records which depict the same real-world entity, plays a fundamental role in data integration and data cleaning tasks. Although deep learning techniques of data science have transformed various applications, there are few efforts to leverage these techniques to deal with entity resolution. We also observe the importance of overlapped tokens and the semantic similarity from pre-trained word vectors can benefit ER. To this end, we propose a deep learning based framework for ER, which can leverage the state-of-the-art techniques in deep neural network communities. We also propose an importance-and-semantics-aware approach for ER using a multilayer perceptron (MLP), to combine the importance of overlapped tokens, semantic similarity and textual similarity of corresponding attribute values of pairs. Comparative experiments demonstrate that our method outperforms the traditional method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pp. 1532–1543. ACL, Stroudsburg (2014)

    Google Scholar 

  2. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013). http://arxiv.org/abs/1301.3781

  3. Fan, F., Li, Z., Chen, Q., Liu, H.: An outlier-detection based approach for automatic entity matching. Chin. J. Comput. 40(10), 2197–2211 (2017). https://doi.org/10.11897/SP.J.1016.2017.02197

  4. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on real-world match problems. PVLDB 3(1), 484–493 (2010). https://doi.org/10.14778/1920841.1920904

  5. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance metrics for name-matching tasks. In: Proceedings of IJCAI-03 Workshop on Information Integration on the Web, pp. 73–78. AAAI Press, Palo Alto (2003)

    Google Scholar 

  6. Köpcke, H., Rahm, E.: Training selection for tuning entity matching. In: Proceedings of the International Workshop on Quality in Databases and Management of Uncertain Data, pp. 3–12 (2008)

    Google Scholar 

  7. Papadakis, G., Koutrika, G., Palpanas, T., Nejdl, W.: Meta-blocking: taking entity resolutionto the next level. IEEE Trans. Knowl. Data Eng. 26(8), 1946–1960 (2014). https://doi.org/10.1109/TKDE.2013.54

    Article  Google Scholar 

  8. Wang, Q., Cui, M., Liang, H.: Semantic-aware blocking for entity resolution. IEEE Trans. Knowl. Data Eng. 28(1), 166–180 (2016). https://doi.org/10.1109/TKDE.2015.2468711

    Article  Google Scholar 

  9. Simonini, G., Bergamaschi, S., Jagadish, H.V.: BLAST: a loosely schema-aware meta-blocking approach for entity resolution. PVLDB 9(12), 1173–1184 (2016). https://doi.org/10.14778/2994509.2994533

  10. Efthymiou, V., Papadakis, G., Papastefanatos, G., Stefanidis, K., Palpanas, T.: Parallel meta-blocking for scaling entity resolution over big heterogeneous data. Inf. Syst. 65, 137–157 (2017). https://doi.org/10.1016/j.is.2016.12.001

    Article  Google Scholar 

  11. Li, L., Li, J., Gao, H.: Rule-based method for entity resolution. IEEE Trans. Knowl. Data Eng. 27(1), 250–263 (2015). https://doi.org/10.1109/TKDE.2014.2320713

    Article  Google Scholar 

  12. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string similarity measures. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 39–48. ACM, New York (2003). https://doi.org/10.1145/956750.956759

  13. Guha, S., Koudas, N., Marathe, A., Srivastava, D.: Merging the results of approximate match operations. In: Proceedings of the 30th International Conference on Very Large Data Bases, pp. 636–647. VLDB Endowment, USA (2004)

    Google Scholar 

  14. Whang, S.E., Marmaros, D., Garcia-Molina, H.: Pay-as-you-go entity resolution. IEEE Trans. Knowl. Data Eng. 25(5), 1111–1124 (2013). https://doi.org/10.1109/TKDE.2012.43

    Article  Google Scholar 

  15. Efthymiou, V., Stefanidis, K., Christophides, V.: Minoan ER: progressive entity resolution in the web of data. In: Proceedings of the 19th International Conference on Extending Database Technology, pp. 670–671. OpenProceedings.org, Konstanz (2016). https://doi.org/10.5441/002/edbt.2016.79

  16. Wang, H., Li, J., Gao, H.: Efficient entity resolution based on subgraph cohesion. Knowl. Inf. Syst. 46(2), 285–314 (2016). https://doi.org/10.1007/s10115-015-0818-7

  17. Wang, J., Li, G., Yu, J.X., Feng, J.: Entity matching: how similar is similar. PVLDB 4(10), 622–633 (2011). https://doi.org/10.14778/2021017.2021020

  18. Christen, P.: Febrl: a freely available record linkage system with a graphical user interface. In: Proceedings of the 2nd Australasian Workshop on Health Data and Knowledge Management, pp. 17–25. Australian Computer Society Inc, Darlinghurst (2008)

    Google Scholar 

  19. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)

    MATH  Google Scholar 

  21. Li, Z., Wang, H., Shao, W., Li, J., Gao, H.: Repairing data through regular expressions. PVLDB 9(5), 432–443 (2016). https://doi.org/10.14778/2876473.2876478

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of China, National Key Research and Development Program (Project Number: 2016YFB1000703), and the National Natural Science Foundation of China under Grant No. 61732014, No. 61332006, No. 61472321, No. 61502390 and No. 61672432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoli Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Li, Z., Qi, W. (2018). An Importance-and-Semantics-Aware Approach for Entity Resolution Using MLP. In: Zhou, Q., Gan, Y., Jing, W., Song, X., Wang, Y., Lu, Z. (eds) Data Science. ICPCSEE 2018. Communications in Computer and Information Science, vol 901. Springer, Singapore. https://doi.org/10.1007/978-981-13-2203-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2203-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2202-0

  • Online ISBN: 978-981-13-2203-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics