Abstract
Entity resolution (ER), as the process of identifying records which depict the same real-world entity, plays a fundamental role in data integration and data cleaning tasks. Although deep learning techniques of data science have transformed various applications, there are few efforts to leverage these techniques to deal with entity resolution. We also observe the importance of overlapped tokens and the semantic similarity from pre-trained word vectors can benefit ER. To this end, we propose a deep learning based framework for ER, which can leverage the state-of-the-art techniques in deep neural network communities. We also propose an importance-and-semantics-aware approach for ER using a multilayer perceptron (MLP), to combine the importance of overlapped tokens, semantic similarity and textual similarity of corresponding attribute values of pairs. Comparative experiments demonstrate that our method outperforms the traditional method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pp. 1532–1543. ACL, Stroudsburg (2014)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013). http://arxiv.org/abs/1301.3781
Fan, F., Li, Z., Chen, Q., Liu, H.: An outlier-detection based approach for automatic entity matching. Chin. J. Comput. 40(10), 2197–2211 (2017). https://doi.org/10.11897/SP.J.1016.2017.02197
Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on real-world match problems. PVLDB 3(1), 484–493 (2010). https://doi.org/10.14778/1920841.1920904
Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance metrics for name-matching tasks. In: Proceedings of IJCAI-03 Workshop on Information Integration on the Web, pp. 73–78. AAAI Press, Palo Alto (2003)
Köpcke, H., Rahm, E.: Training selection for tuning entity matching. In: Proceedings of the International Workshop on Quality in Databases and Management of Uncertain Data, pp. 3–12 (2008)
Papadakis, G., Koutrika, G., Palpanas, T., Nejdl, W.: Meta-blocking: taking entity resolutionto the next level. IEEE Trans. Knowl. Data Eng. 26(8), 1946–1960 (2014). https://doi.org/10.1109/TKDE.2013.54
Wang, Q., Cui, M., Liang, H.: Semantic-aware blocking for entity resolution. IEEE Trans. Knowl. Data Eng. 28(1), 166–180 (2016). https://doi.org/10.1109/TKDE.2015.2468711
Simonini, G., Bergamaschi, S., Jagadish, H.V.: BLAST: a loosely schema-aware meta-blocking approach for entity resolution. PVLDB 9(12), 1173–1184 (2016). https://doi.org/10.14778/2994509.2994533
Efthymiou, V., Papadakis, G., Papastefanatos, G., Stefanidis, K., Palpanas, T.: Parallel meta-blocking for scaling entity resolution over big heterogeneous data. Inf. Syst. 65, 137–157 (2017). https://doi.org/10.1016/j.is.2016.12.001
Li, L., Li, J., Gao, H.: Rule-based method for entity resolution. IEEE Trans. Knowl. Data Eng. 27(1), 250–263 (2015). https://doi.org/10.1109/TKDE.2014.2320713
Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string similarity measures. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 39–48. ACM, New York (2003). https://doi.org/10.1145/956750.956759
Guha, S., Koudas, N., Marathe, A., Srivastava, D.: Merging the results of approximate match operations. In: Proceedings of the 30th International Conference on Very Large Data Bases, pp. 636–647. VLDB Endowment, USA (2004)
Whang, S.E., Marmaros, D., Garcia-Molina, H.: Pay-as-you-go entity resolution. IEEE Trans. Knowl. Data Eng. 25(5), 1111–1124 (2013). https://doi.org/10.1109/TKDE.2012.43
Efthymiou, V., Stefanidis, K., Christophides, V.: Minoan ER: progressive entity resolution in the web of data. In: Proceedings of the 19th International Conference on Extending Database Technology, pp. 670–671. OpenProceedings.org, Konstanz (2016). https://doi.org/10.5441/002/edbt.2016.79
Wang, H., Li, J., Gao, H.: Efficient entity resolution based on subgraph cohesion. Knowl. Inf. Syst. 46(2), 285–314 (2016). https://doi.org/10.1007/s10115-015-0818-7
Wang, J., Li, G., Yu, J.X., Feng, J.: Entity matching: how similar is similar. PVLDB 4(10), 622–633 (2011). https://doi.org/10.14778/2021017.2021020
Christen, P.: Febrl: a freely available record linkage system with a graphical user interface. In: Proceedings of the 2nd Australasian Workshop on Health Data and Knowledge Management, pp. 17–25. Australian Computer Society Inc, Darlinghurst (2008)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12, 2825–2830 (2011)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)
Li, Z., Wang, H., Shao, W., Li, J., Gao, H.: Repairing data through regular expressions. PVLDB 9(5), 432–443 (2016). https://doi.org/10.14778/2876473.2876478
Acknowledgments
This work was supported by the Ministry of Science and Technology of China, National Key Research and Development Program (Project Number: 2016YFB1000703), and the National Natural Science Foundation of China under Grant No. 61732014, No. 61332006, No. 61472321, No. 61502390 and No. 61672432.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xu, Y., Li, Z., Qi, W. (2018). An Importance-and-Semantics-Aware Approach for Entity Resolution Using MLP. In: Zhou, Q., Gan, Y., Jing, W., Song, X., Wang, Y., Lu, Z. (eds) Data Science. ICPCSEE 2018. Communications in Computer and Information Science, vol 901. Springer, Singapore. https://doi.org/10.1007/978-981-13-2203-7_8
Download citation
DOI: https://doi.org/10.1007/978-981-13-2203-7_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-2202-0
Online ISBN: 978-981-13-2203-7
eBook Packages: Computer ScienceComputer Science (R0)