Skip to main content

Method and Evaluation Method of Ultra-Short-Load Forecasting in Power System

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 902))

Abstract

This article describes the basic method of ultra-short-term load forecasting include the Linear Extrapolation, Kalman Filter Method, Time Series Method, Artificial Neural Networks and Support Vector Machine Algorithm. Then, it summarizes the commonly used methods to improve the accuracy of prediction from the comprehensive forecasting model and data mining technology. Finally, we divide the accuracy of the short-term load forecast into 5 min, 10 min, 30 min and 60 min and innovatively presented the concept of the accuracy in daily average load forecasting from different periods by giving the evaluation formula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toyoda, J., Chen, M.S., Inoue, Y.: An application of state estimation to short-term load forecasting, Part I: forecasting modeling. IEEE Trans. Power Appar. Syst. 89(7), 1678–1682 (1970)

    Article  Google Scholar 

  2. Vemuri, S., Huang, W.L., Nelson, D.J.: Online algorithms for forecasting hourly loads of an electric utility. IEEE Trans. Power Appar. Syst. 100(8), 3775–3784 (1981)

    Article  Google Scholar 

  3. Ziegel, E.R.: Time series analysis, forecasting, and control. In: Oakland, California, Holden-Day, 1976, vol. 37(2), pp. 238–242 (1976)

    Google Scholar 

  4. Vemuri, S., Hoveida, B., Mohebbi, S.: Short term load forecasting based on weather load models. IFAC Proc. Vol. 20(6), 315–320 (1987)

    Article  Google Scholar 

  5. Bengio, Y.: Deep learning of representations: looking forward. In: Dediu, A.-H., Martín-Vide, C., Mitkov, R., Truthe, B. (eds.) SLSP 2013. LNCS (LNAI), vol. 7978, pp. 1–37. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39593-2_1

    Chapter  Google Scholar 

  6. Christiaanse, W.R.: Short-term load forecasting using general exponential smoothing. IEEE Trans. Power Appar. Syst. PAS 90(2), 900–911 (1971)

    Article  Google Scholar 

  7. Sage, A.P., Husa, G.W.: Algorithms for sequential adaptive estimation of prior statistics. In: Adaptive Processes, p. 61 (1969)

    Google Scholar 

  8. Mehra, R.K.: On the identification of variances and adaptive Kalman filtering. IEEE Trans. Autom. Control 15(2), 175–184 (1969)

    Article  MathSciNet  Google Scholar 

  9. Khalyasmaa, A.I., Dmitriev, S.A., Kokin, S.E.: Energy information model for power systems monitoring. Adv. Mater. Res. 732–733, 841–847 (2013)

    Article  Google Scholar 

  10. Coelho, I.M., Coelho, V.N., Luz, E.J.D.S., Ochi, L.S., Guimaraes, F.G., Rios, E.: A GPU deep learning metaheuristic based model for time series forecasting. Appl. Energy 201, 412–418 (2017)

    Article  Google Scholar 

  11. Dedinec, A., Filiposka, S., Dedinec, A., Kocarev, L.: Deep belief network based electricity load forecasting: an analysis of macedonian case. Energy 115, 1688–1700 (2016)

    Article  Google Scholar 

  12. Kazakov, E.G., Kirillov, A.V., Kutsin, V.V., Yasenev, N.D.: Educational process at electric drive and automation of industrial installations department of ustu-upi and its methodical and laboratory support. Russ. Electr. Eng. 80(9), 473–476 (2009)

    Article  Google Scholar 

  13. Fan, C., Xiao, F., Zhao, Y.: A short-term building cooling load prediction method using deep learning algorithms. Appl. Energy 195, 222–233 (2017)

    Article  Google Scholar 

  14. Feng, C., Cui, M., Hodge, B.M., Zhang, J.: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting. Appl. Energy 190, 1245–1257 (2017)

    Article  Google Scholar 

  15. Li, L., Ota, K., Dong, M.: When weather matters: Iot-based electrical load forecasting for smart grid. IEEE Commun. Mag. 55(10), 46–51 (2017)

    Article  Google Scholar 

  16. Qiu, X., Ren, Y., Suganthan, P.N., Amaratunga, G.A.J.: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Appl. Soft Comput. 54(2), 246–255 (2017)

    Article  Google Scholar 

  17. Abusaimeh, H., Yang, S.H.: Balancing the power consumption speed in flat and hierarchical WSN. Int. J. Autom. Comput. 5(4), 366–375 (2008)

    Article  Google Scholar 

  18. Ryu, S., Noh, J., Kim, H.: Deep neural network based demand side short term load forecasting. In: IEEE International Conference on Smart Grid Communications, p. 3 (2016)

    Google Scholar 

  19. Wang, L., Zhang, Z., Chen, J.: Short term electricity price forecasting with stacked denoising autoencoders. IEEE Trans. Power Syst. 1(99), 1 (2017)

    Google Scholar 

  20. Chan, E.H.P.: Application of neural network computing in intelligent alarm processing (power systems). In: Power Industry Computer Application Conference, 1989, Conference Papers, pp. 246–251 (2002)

    Google Scholar 

  21. Wu, X., Shen, Z., Song, Y.: A novel approach for short term electric load forecasting. In: World Congress on Intelligent Control and Automation, pp. 1999–2002 (2016)

    Google Scholar 

  22. Moura, E.P.D., Souto, C.R., Silva, A.A., Irmão, M.A.S.: Evaluation of principal component analysis and neural network performance for bearing fault diagnosis from vibration signal processed by RS and DF analyses. Mech. Syst. Signal Process. 25(5), 1765–1772 (2011)

    Article  Google Scholar 

  23. Vaitheeswaran, N., Balasubramanian, R.: Stochastic model for optimal declaration of day ahead station availability in power pools in India. In: Power India Conference, p. 5 (2006)

    Google Scholar 

  24. Jain, A., Balasubramanian, R., Tripathy, S.C., Singh, B.N.: Power system topological observability analysis using artificial neural networks. In: Power Engineering Society General Meeting, pp. 497–502 (2005)

    Google Scholar 

  25. Nie, H., Liu, G., Liu, X., Wang, Y.: Hybrid of arima and SVMs for short term load forecasting. Energy Procedia 16(5), 1455–1460 (2012)

    Article  Google Scholar 

  26. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 513–529 (2012)

    Article  Google Scholar 

  27. Shrivastava, N.A., Panigrahi, B.K., Lim, M.H.: Electricity price classification using extreme learning machines. Neural Comput. Appl. 27(1), 9–18 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songling Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ou, J., Li, S., Zhang, J., Ding, C. (2018). Method and Evaluation Method of Ultra-Short-Load Forecasting in Power System. In: Zhou, Q., Miao, Q., Wang, H., Xie, W., Wang, Y., Lu, Z. (eds) Data Science. ICPCSEE 2018. Communications in Computer and Information Science, vol 902. Springer, Singapore. https://doi.org/10.1007/978-981-13-2206-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2206-8_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2205-1

  • Online ISBN: 978-981-13-2206-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics