Skip to main content

A Hybrid Replacement Strategy for MOEA/D

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 951))

Abstract

In MOEA/D, the replacement strategy plays a key role in balancing diversity and convergence. However, existing adaptive replacement strategies either focus on neighborhood or global replacement strategy, which may have no obvious effects on balance of diversity and convergence in tackling complicated MOPs. In order to overcome this shortcoming, we propose a hybrid mechanism balancing neighborhood and global replacement strategy. In this mechanism, a probability threshold \( p_{t} \) is applied to determine whether to execute a neighborhood or global replacement strategy, which could balance diversity and convergence. Furthermore, we design an offspring generation method to generate the high-quality solution for each subproblem, which can ease mismatch between subproblems and solutions. Based on the classic MOEA/D, we design a new algorithm framework, called MOEA/D-HRS. Compared with other state-of-the-art MOEAs, experimental results show that the proposed algorithm obtains the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Article  Google Scholar 

  2. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83

    Chapter  Google Scholar 

  4. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056872

    Chapter  Google Scholar 

  5. Laumanns, M.: SPEA2: improving the strength Pareto evolutionary algorithm. Eidgenössische Technische Hochschule Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK) (2001)

    Google Scholar 

  6. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  7. Basseur, M., Zitzler, E.: A preliminary study on handling uncertainty in indicator-based multiobjective optimization. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 727–739. Springer, Heidelberg (2006). https://doi.org/10.1007/11732242_71

    Chapter  Google Scholar 

  8. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  9. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  10. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  11. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained mop test instances. In: 2009 IEEE Congress on Evolutionary Computation, pp. 203–208. IEEE (2009)

    Google Scholar 

  12. Mashwani, W.K., Salhi, A.: A decomposition-based hybrid multiobjective evolutionary algorithm with dynamic resource allocation. Appl. Soft Comput. 12(9), 2765–2780 (2012)

    Article  Google Scholar 

  13. Ma, X., et al.: MOEA/D with opposition-based learning for multiobjective optimization problem. Neurocomputing 146, 48–64 (2014)

    Article  Google Scholar 

  14. Zhou, A., Zhang, Y., Zhang, G., Gong, W.: On neighborhood exploration and subproblem exploitation in decomposition based multiobjective evolutionary algorithms. In: 2017 IEEE Congress on Evolutionary Computation, pp. 1704–1711. IEEE (2015)

    Google Scholar 

  15. Zhang, H., Zhou, A., Zhang, G., Singh, H.K.: Accelerating MOEA/D by Nelder-Mead method. In: 2017 IEEE Congress on Evolutionary Computation, pp. 976–983. IEEE (2017)

    Google Scholar 

  16. Zhang, J., Zhou, A., Zhang, G.: A multiobjective evolutionary algorithm based on decomposition and preselection. In: Gong, M., Pan, L., Song, T., Tang, K., Zhang, X. (eds.) BIC-TA 2015. CCIS, vol. 562, pp. 631–642. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-49014-3_56

    Chapter  Google Scholar 

  17. Lin, X., Zhang, Q., Kwong, S.: A decomposition based multiobjective evolutionary algorithm with classification. In: 2016 IEEE Congress on Evolutionary Computation, pp. 3292–3299. IEEE (2016)

    Google Scholar 

  18. Zhang, J., Zhou, A., Tang, K., and Zhang, G.: Preselection via classification: a case study on evolutionary multiobjective optimization. arXiv:1708.01146 (2017)

  19. Chen, X., Shi, C., Zhou, A., Wu, B ., Cai, Z.: A decomposition based multi objective evolutionary algorithm with semi-supervised classification. In: 2017 IEEE Congress on Evolutionary Computation, pp. 797-804. IEEE (2017)

    Google Scholar 

  20. Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16(3), 442–446 (2012)

    Article  Google Scholar 

  21. Li, K., Fialho, A., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 18(1), 114–130 (2014)

    Article  Google Scholar 

  22. Venske, S.M., GonçAlves, R.A., Delgado, M.R.: ADEMO/D: multiobjective optimization by an adaptive differential evolution algorithm. Neurocomputing 127(127), 65–77 (2014)

    Article  Google Scholar 

  23. Lin, Q., et al.: A novel adaptive control strategy for decomposition-based multiobjective algorithm. Comput. Oper. Res. 78, 94–107 (2016)

    Article  MathSciNet  Google Scholar 

  24. Lin, Q., et al.: Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. Inf. Sci. 339, 332–352 (2016)

    Article  Google Scholar 

  25. Li, K., Zhang, Q., Kwong, S., Li, M., Wang, R.: Stable matching-based selection in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 18(6), 909–923 (2014)

    Article  Google Scholar 

  26. Li, K., Kwong, S., Zhang, Q., Deb, K.: Interrelationship-based selection for decomposition multiobjective optimization. IEEE Trans. Cybern. 45(10), 2076–2088 (2015)

    Article  Google Scholar 

  27. Wang, Z., Zhang, Q., Zhou, A., Gong, M., Jiao, L.: Adaptive replacement strategies for MOEA/D. IEEE Trans. Cybern. 46(2), 474–486 (2017)

    Article  Google Scholar 

  28. Tam, H.H., Leung, M.F., Wang, Z., Ng, S.C., Cheung, C.C., Lui, A.K.: Improved adaptive global replacement scheme for MOEA/D-AGR. In: 2016 IEEE congress on Evolutionary Computation, pp. 2153–2160. IEEE (2016)

    Google Scholar 

  29. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13495-1_44

    Chapter  Google Scholar 

  30. Yu, C., Kelley L., Zheng, S., Tan Y.: Fireworks algorithm with differential mutation for solving the CEC 2014 competition problems. In: 2014 IEEE congress on Evolutionary Computation, pp. 3238–3245. IEEE (2014)

    Google Scholar 

  31. Liu, L., Zheng, S., Tan, Y.: S-metric based multi-objective fireworks algorithm. In: IEEE Congress on Evolutionary Computation, pp. 1257–1264 (2015)

    Google Scholar 

  32. Cai, Z., Wang, Y.: A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Trans. Evol. Comput. 10(6), 658–675 (2006)

    Article  Google Scholar 

  33. Tsutsui, S., Ghosh, A.: A study on the effect of multi-parent recombination in real coded genetic algorithms. In: IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence, pp. 828–833 (1998)

    Google Scholar 

  34. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  35. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 26, 30–45 (1996)

    Google Scholar 

  36. Tizhoosh, H.R.: Opposition-based reinforcement learning. J. Adv. Comput. Intell. Intell. Inform. 10(4), 578–585 (2006)

    Article  MathSciNet  Google Scholar 

  37. Vapnik, V.N.: Statistical learning theory. Encycl. Sci. Learn. 41(4), 3185–3185 (1998)

    Google Scholar 

  38. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation, pp. 71–78. IEEE (2013)

    Google Scholar 

  39. Mallipeddi, R., Wu, G., Lee, M., Suganthan, P.N.: Gaussian adaptation based parameter adaptation for differential evolution. In: 2014 IEEE Congress on Evolutionary Computation, pp. 1760–1767. IEEE (2014)

    Google Scholar 

  40. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)

    Article  MathSciNet  Google Scholar 

  41. You, H., Yang, M., Wang, D., Jia, X.: Kriging model combined with Latin hypercube sampling for surrogate modeling of analog integrated circuit performance. In: International Symposium on Quality of Electronic Design, pp. 554–558. IEEE (2009)

    Google Scholar 

  42. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  43. Li, Y., Zhou, A., Zhang, G.: An MOEA/D with multiple differential evolution mutation operators. In: 2014 IEEE Congress on Evolutionary Computation, pp. 397–404. IEEE (2014)

    Google Scholar 

  44. Naujoks, B., Beume, N., Emmerich, M.: Multi-objective optimisation using S-metric selection: application to three-dimensional solution spaces. In: 2015 IEEE Congress on Evolutionary Computation, pp. 1282–1289. IEEE (2005)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (No. 61375058, 61673397), and the Co-construction Project of Beijing Municipal Commission of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Shi, C., Zhou, A., Xu, S., Wu, B. (2018). A Hybrid Replacement Strategy for MOEA/D. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 951. Springer, Singapore. https://doi.org/10.1007/978-981-13-2826-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2826-8_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2825-1

  • Online ISBN: 978-981-13-2826-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics