Skip to main content

Adaptive Recombination Operator Selection in Push and Pull Search for Solving Constrained Single-Objective Optimization Problems

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 951))

Abstract

This paper proposes an adaptive method to select recombination operators, including differential evolution (DE) operators and polynomial operators. Moreover, a push and pull search (PPS) method is used to handle constrained single-objective optimization problems (CSOPs). The PPS has two search stages—the push stage and the pull stage. In the push stage, a CSOP is optimized without considering constraints. In the pull stage, the CSOP is optimized with an improved epsilon constraint-handling method. In this paper, twenty-eight CSOPs are used to test the performance of the proposed adaptive GA with the PPS method (AGA-PPS). AGA-PPS is compared with three other differential evolution algorithms, including LSHADE44+IDE, LSHADE44 and UDE. The experimental results indicate that the proposed AGA-PPS is significantly better than other compared algorithms on the twenty-eight CSOPsq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms. LNCS, vol. 455. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53032-0

    Book  MATH  Google Scholar 

  2. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Optimization. Wiley, Hoboken (2000)

    Google Scholar 

  3. Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization. In: Nation University of Defense Technology, Changsha, Hunan, PA China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Techical report (2016)

    Google Scholar 

  4. Le, R.R.G., Knopf, L.C., Haftka, R.T.: A segregated genetic algorithm for constrained structural optimization. In: International Conference on Genetic Algorithms, pp. 558–565. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  5. Huang, F., Wang, L., He, Q.: An effective co-evolutionary differential evolution for constrained optimization. Appl. Math. Comput. 186(1), 340–356 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Surry, P.D., Radcliffe, N.J.: The COMOGA method: constrained optimisation by multi-objective genetic algorithms. Control Cybern. 26(3), 391–412 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. 9(6), 448–462 (2005)

    Article  Google Scholar 

  8. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  9. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

  10. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)

    Article  Google Scholar 

  11. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for Differential Evolution. In: 2013 IEEE Congress on Evolutionary Computation, pp. 71–78. IEEE (2013)

    Google Scholar 

  12. Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation, pp. 1658–1665. IEEE (2014)

    Google Scholar 

  13. Polkov, R.: L-SHADE with competing strategies applied to constrained optimization. In: 2014 IEEE Congress on Evolutionary Computation, pp. 1683–1689. IEEE (2017)

    Google Scholar 

  14. Jordehi, A.R.: A review on constraint handling strategies in particle swarm optimisation. Neural Comput. 26(6), 1265–1275 (2015)

    Article  Google Scholar 

  15. Takahama, T., Sakai, S., Iwane, N.: Solving nonlinear constrained optimization problems by the \(\varepsilon \) constrained differential evolution. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 2322–2327. IEEE (2006)

    Google Scholar 

  16. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  17. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 26, 30–45 (1996)

    Google Scholar 

  18. Coello, C.A.C.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11–12), 1245–1287 (2002)

    Article  MathSciNet  Google Scholar 

  19. Tvrdik, J., Polakova, R.: A simple framework for constrained problems with application of L-SHADE44 and IDE. In: 2017 IEEE Congress on Evolutionary Computation, pp. 1436–1443. IEEE (2017)

    Google Scholar 

  20. Trivedi, A.: A unified differential evolution algorithm for constrained optimization problems. In: 2017 IEEE Congress on Evolutionary Computation, pp. 1231–1238. IEEE (2017)

    Google Scholar 

  21. Derrac, J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhun Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, Z., Wang, Z., Fang, Y., Li, W., Yuan, Y., Bian, X. (2018). Adaptive Recombination Operator Selection in Push and Pull Search for Solving Constrained Single-Objective Optimization Problems. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 951. Springer, Singapore. https://doi.org/10.1007/978-981-13-2826-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2826-8_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2825-1

  • Online ISBN: 978-981-13-2826-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics