Skip to main content

Random Repeatable Network: Unsupervised Learning to Detect Interest Point

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 952))

  • 884 Accesses

Abstract

This paper presents a Random Repeatable Network (RRN) which is an entirely unsupervised training framework for interest point detection. The existing learning based methods make tradeoff between the unsupervised level and the approximation degree to the objective of repeatability, while our RRN model trains a convolutional neural network whose loss function is directly based on point repeatability without relying on any initial interest point detector. In terms of point repeatability under perspective transform or illumination change, we propose a novel loss function with regularization term of repeatability, which is optimized by an effective iterative algorithm. Experiments demonstrate our model achieves better performance on test data compared to some state-of-the-art interest point detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Fourth Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  2. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  3. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34

    Chapter  Google Scholar 

  4. Strecha, C., Lindner, A., Ali, K., Fua, P.: Training for task specific keypoint detection. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 151–160. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03798-6_16

    Chapter  Google Scholar 

  5. Verdie, Y., Yi, K., Fua, P., et al.: TILDE: a temporally invariant learned detector. In: 2015 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5279–5288. IEEE, New York (2015)

    Google Scholar 

  6. Savinov, N., Seki, A., Ladicky, L., et al.: Quad-networks: unsupervised learning to rank for interest point detection. In: 2017 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  7. DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. arXiv preprint arXiv:1712.07629 (2017)

  8. Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_28

    Chapter  Google Scholar 

  9. Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 183–196. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_14

    Chapter  Google Scholar 

  10. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 807–814 (2010)

    Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation 2015. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. IEEE, New York (2015)

    Google Scholar 

  15. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision, pp. 2548–2555. IEEE, New York (2011)

    Google Scholar 

  16. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_16

    Chapter  Google Scholar 

  17. Förstner, W., Dickscheid, T., Schindler, F.: Detecting interpretable and accurate scale-invariant keypoints. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2256–2263. IEEE, New York (2009)

    Google Scholar 

  18. Fritsch, J., Kuhnl, T., Geiger, A.: A new performance measure and evaluation benchmark for road detection algorithms. In: 16th International IEEE Conference on Intelligent Transportation Systems, pp. 1693–1700. IEEE, New York (2013)

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by National Foundation of China under Grants 41371339 and The Fundamental Research Funds for the Central Universities No. 2017KFYXJJ179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihua Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, P., Tan, Y. (2018). Random Repeatable Network: Unsupervised Learning to Detect Interest Point. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 952. Springer, Singapore. https://doi.org/10.1007/978-981-13-2829-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2829-9_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2828-2

  • Online ISBN: 978-981-13-2829-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics