Abstract
This paper presents a Random Repeatable Network (RRN) which is an entirely unsupervised training framework for interest point detection. The existing learning based methods make tradeoff between the unsupervised level and the approximation degree to the objective of repeatability, while our RRN model trains a convolutional neural network whose loss function is directly based on point repeatability without relying on any initial interest point detector. In terms of point repeatability under perspective transform or illumination change, we propose a novel loss function with regularization term of repeatability, which is optimized by an effective iterative algorithm. Experiments demonstrate our model achieves better performance on test data compared to some state-of-the-art interest point detector.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Fourth Alvey Vision Conference, pp. 147–151 (1988)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34
Strecha, C., Lindner, A., Ali, K., Fua, P.: Training for task specific keypoint detection. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 151–160. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03798-6_16
Verdie, Y., Yi, K., Fua, P., et al.: TILDE: a temporally invariant learned detector. In: 2015 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5279–5288. IEEE, New York (2015)
Savinov, N., Seki, A., Ladicky, L., et al.: Quad-networks: unsupervised learning to rank for interest point detection. In: 2017 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. arXiv preprint arXiv:1712.07629 (2017)
Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_28
Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 183–196. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_14
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 807–814 (2010)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation 2015. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. IEEE, New York (2015)
Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision, pp. 2548–2555. IEEE, New York (2011)
Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_16
Förstner, W., Dickscheid, T., Schindler, F.: Detecting interpretable and accurate scale-invariant keypoints. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2256–2263. IEEE, New York (2009)
Fritsch, J., Kuhnl, T., Geiger, A.: A new performance measure and evaluation benchmark for road detection algorithms. In: 16th International IEEE Conference on Intelligent Transportation Systems, pp. 1693–1700. IEEE, New York (2013)
Acknowledgments
This research was partially supported by National Foundation of China under Grants 41371339 and The Fundamental Research Funds for the Central Universities No. 2017KFYXJJ179.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yan, P., Tan, Y. (2018). Random Repeatable Network: Unsupervised Learning to Detect Interest Point. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 952. Springer, Singapore. https://doi.org/10.1007/978-981-13-2829-9_37
Download citation
DOI: https://doi.org/10.1007/978-981-13-2829-9_37
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-2828-2
Online ISBN: 978-981-13-2829-9
eBook Packages: Computer ScienceComputer Science (R0)