Skip to main content

Text-Associated Max-Margin DeepWalk

  • Conference paper
  • First Online:
Big Data (Big Data 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 945))

Included in the following conference series:

Abstract

Most existing network representation algorithms learn the network representations based on network structure, however, they neglect the rich external information associated with nodes (i.e. text contents, communities and label information). Meanwhile, the learnt representations usually lack the discriminative ability for the tasks of node classification and linking prediction. We consequently overcame the above challenges by presenting a novel semi-supervised algorithm, text-associated max-margin DeepWalk algorithm (TMDW). TMDW incorporates text contents and network structures into the network representation learning based on the inductive matrix completion algorithm, and then we use node’s category to optimize the learnt network representations based on the mar-margin principle and biased gradient. For integrating the above tasks, we propose a novel and efficient framework of network representation learning, this framework is easy to extend and generate discriminative representations. We then evaluate our model using the multi-class classification tasks. The experimental results demonstrate that TMDW outperforms other baseline methods on three real-world datasets. The visualization task of TMDW shows that our model is more discriminative than the other unsupervised approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://citeseerx.ist.psu.edu/.

  2. 2.

    https://people.cs.umass.edu/mccallum/data.html.

  3. 3.

    http://arnetminer.org/citation.

References

  1. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. 3(3), 1–13 (2007)

    Article  Google Scholar 

  2. Tu, C., Liu, Z., Sun, M.S.: Inferring correspondences from multiple sources for microblog user tags. In: Huang, H., Liu, T., Zhang, H.-P., Tang, J. (eds.) SMP 2014. CCIS, vol. 489, pp. 1–12. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45558-6_1

    Chapter  Google Scholar 

  3. Yu, H.F., Jian, P., Kar, P., Dhillon, I.S.: Large-scale multi-label learning with missing labels. In: Proceedings of ICML, pp. 593–601 (2014)

    Google Scholar 

  4. Liben-nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Assoc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  5. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  6. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  7. Tang, J., Qu, M., Wang, M.Z., Zhang, M., Yan, J., Mei, Q.Z.: Line: large-scale information network embedding. In: Proceedings of WWW, pp. 1067–1077 (2015)

    Google Scholar 

  8. Cao, S.S., Lu, W., Xu, Q.K.: GraRep: learning graph representations with global structural information. In: Conference on Information and Knowledge Management, pp. 891–900 (2015)

    Google Scholar 

  9. Wang, D.X., Cui, P., Zhu, W.W.: Structural deep network embedding. In: The ACM SIGKDD International Conference, pp. 1225–1234 (2016)

    Google Scholar 

  10. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of ACM SIGKDD, pp. 855–864 (2016)

    Google Scholar 

  11. Tang, J., Qu, M., Mei, Q.Z.: PTE: predictive text embedding through large-scale heterogeneous text networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1165–1174 (2015)

    Google Scholar 

  12. Sun, M.S., Guo, J., Ding, X., Liu, T.: A general framework for content-enhanced network representation learning. arXiv:1610.02906 (2016)

  13. Tu, C.C., Wang, H., Zeng, X.K., Liu, Z.Y., Sun, M.S.: Community-enhanced network representation learning for network analysis. arXiv:1611.06645 (2016)

  14. Pan, S.R., Wu, J., Zhu, X.Q., Zhang, C.Q., Wang, Y.: Tri-party deep network representation. In: Proceedings of IJCAI 2016, pp. 1895–1901 (2016)

    Google Scholar 

  15. Natarajan, N., Dhillon, I.S.: Inductive matrix completion for predicting gene-disease associations. Bioinformatics 30(12), 60–68 (2014)

    Article  Google Scholar 

  16. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In: Advances in Neural Information Processing Systems, pp. 2177–2185 (2014)

    Google Scholar 

  17. Yang, C., Liu, Z.Y.: Comprehend deepwalk as matrix factorization. arXiv:1501.00358 (2015)

  18. Yang, C., Liu, Z.Y., Zhao, D.L.: Network representation learning with rich text information. In: International Conference on Artificial Intelligence, pp. 2111–2117 (2016)

    Google Scholar 

  19. Tu, C.C., Zhang, W.C., Liu, Z.Y., Sun, M.S.: Max-margin DeepWalk: discriminative learning of network representation. In: Proceedings of IJCAI (2016)

    Google Scholar 

  20. Hearst, M.A., Dumais, S.T., Osman, E.: Support vector machines. IEEE Intell. Syst. Their Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  21. Zhu, J., Ahmed, A., Xing, E.P.: MedLDA: maximum margin supervised topic models. In: International Conference on Machine Learning, pp. 2237–2278 (2009)

    Google Scholar 

  22. Borg, I., Groenen, P.: Modern multidimensional scaling: theory and applications. Econ. Inst. Res. Pap. 40(3), 277–280 (2005)

    MATH  Google Scholar 

  23. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  24. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  25. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(5), 993–1022 (2003)

    MATH  Google Scholar 

  26. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of ACM, pp. 50–57 (2000)

    Google Scholar 

  27. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  28. Wang, X., Cui, P., Wang, J.: Community preserving network embedding. In: AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  29. Huang, Z.P., Mamoulis, N.: Heterogeneous information network embedding for meta path based proximity. arXiv:1701.05291 (2017)

  30. Yang, C., Sun, M.S., Li, Z.Y., Tu, C.C.: Fast network embedding enhancement via high order proximity approximation. In: Proceedings of IJCAI, pp. 3894–3900 (2017)

    Google Scholar 

  31. Perozzi, B., Kulkarni, V., Skiena, S.: Walklets: multiscale graph embeddings for interpretable network classification. arXiv:1605.02115 (2016)

  32. Kipf, T.N., Welling, N.: Semi supervised classification with graph convolutional networks. arXiv:1609.02907 (2016)

  33. Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: Proceedings of NIPS, pp. 25–32 (2003)

    Google Scholar 

  34. Pei, W.Z., Ge, T., Chang, B.B.: Max-margin tensor neural network for chinese word segmentation. In: Proceedings of ACL, pp. 293–303 (2014)

    Google Scholar 

  35. Zhou, D.Y., Huang, J.Y., Schölkopf, B.: Beyond pairwise classification and clustering using hypergraphs. In: proceedings of NIPS 2006, pp. 1601–1608 (2005)

    Google Scholar 

  36. Tu, K., Cui, P., Wang, X., Wang, F., Zhu, W.W.: Structural deep embedding for hyper-networks. In: AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  37. Li, D., Xu, Z.M., Li, S.: Link prediction in social networks based on hypergraph. In: Proceedings of WWW, pp. 41–42 (2013)

    Google Scholar 

  38. Ma, J.X., Cui, P., Zhu, W.W.: DepthLGP: learning embeddings of out-of-sample nodes in dynamic networks. In: AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  39. Lee, D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  40. Morin, F., Bengio, Y.: Hierarchical probabilistic neural network language model. In: Tenth International Workshop on Artificial Intelligence and Statistics, pp. 246–252 (2005)

    Google Scholar 

  41. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2(2), 265–292 (2002)

    MATH  Google Scholar 

  42. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

Download references

Acknowledgement

This project is supported by NSFC (No. 61663041, 61763041), the Program for Changjiang Scholars and Innovative Research Team in Universities (No. IRT_15R40), the Research Fund for the Chunhui Program of Ministry of Education of China (No. Z2014022) and the Nature Science Foundation of Qinghai Province (2014-ZJ-721), the Fundamental Research Funds for the Central Universities (2017TS045), and the Tibetan Information Processing and Machine Translation Key Laboratory (2013-Z-Y17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, Z., Zhao, H., Zhang, K., Zhu, Y., Xiao, Y. (2018). Text-Associated Max-Margin DeepWalk. In: Xu, Z., Gao, X., Miao, Q., Zhang, Y., Bu, J. (eds) Big Data. Big Data 2018. Communications in Computer and Information Science, vol 945. Springer, Singapore. https://doi.org/10.1007/978-981-13-2922-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2922-7_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2921-0

  • Online ISBN: 978-981-13-2922-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics