Skip to main content

Data-Driven Multi-modal Haptic Rendering Combining Force, Tactile, and Thermal Feedback

  • Conference paper
  • First Online:
Haptic Interaction (AsiaHaptics 2018)

Abstract

We introduce a data-driven multi-modal haptic rendering system which simultaneously presents force, tactile, and thermal feedback. To handle force, tactile, and thermal feedback together, a vibration actuator and a peltier module are attached to a force-feedback device. Several haptic properties of an object—shape, texture, friction, and viscoelasticity—are considered as components of force rendering. About tactile feedback, we combine contact transient and texture vibration when the user contacts and explores a surface. Thermal sensation between skin and an object rendered by considering both heat flux and the initial temperatures of the object and skin. Rendering models for all the modalities are collected from real interaction and modeled in a data-driven manner. We expect that our multi-modal rendering system improves realism of haptic sensation in the virtual environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, S., Lang, J.: Interactive scanning of haptic textures and surface compliance. In: Proceedings of 3DIM, pp. 99–106. IEEE (2007)

    Google Scholar 

  2. Basdogan, C., Ho, C., Srinivasan, M.A.: A raybased haptic rendering technique for displaying shape and texture of 3D objects in virtual environments. In: ASME Winter Annual Meeting, vol. 61, pp. 77–84 (1997)

    Google Scholar 

  3. Choi, H., Cho, S., Shin, S., Lee, H., Choi, S.: Data-driven thermal rendering: an initial study. In: Proceedings of the IEEE Haptics Symposium, pp. 344–350 (2018)

    Google Scholar 

  4. Culbertson, H., Lopez Delgado, J., Kuchenbecker, K.: One hundred data-driven haptic texture models and open-source methods for rendering on 3D objects. In: Proceedings of IEEE HAPTICS, pp. 319–325, February 2014. https://doi.org/10.1109/HAPTICS.2014.6775475

  5. Culbertson, H., Unwin, J., Goodman, B., Kuchenbecker, K.: Generating haptic texture models from unconstrained tool-surface interactions. In: Proceedings of IEEE WHC, pp. 295–300, April 2013. https://doi.org/10.1109/WHC.2013.6548424

  6. Dahl, P.R.: Solid friction damping of mechanical vibrations. AIAA J. 14(12), 1675–1682 (1976)

    Article  Google Scholar 

  7. Fritz, J.P., Barner, K.E.: Stochastic models for haptic texture. In: Proceedings of SPIE, pp. 34–44. International Society for Optics and Photonics (1996)

    Google Scholar 

  8. Guruswamy, V., Lane, J., Lee, W.: Modelling of haptic vibration textures with infinite-impulse-response filter. In: Proceedings of IEEE HAVE, pp. 105–110 (2009)

    Google Scholar 

  9. Guruswamy, V.L., Lang, J., Lee, W.S.: IIR filter models of haptic vibration textures. IEEE Trans. Instrum. Meas. 60(1), 93–103 (2011)

    Article  Google Scholar 

  10. Hayward, V., Yi, D.: Change of height: an approach to the haptic display of shape and texture without surface normal. In: Experimental Robotics VIII, pp. 570–579 (2003)

    Google Scholar 

  11. Hollins, M., Bensmaïa, S., Risner, R.: The duplex theory of tactile texture perception. In: Proceedings of the 14th Annual Meeting of the International Society for Psychophysics, pp. 115–121 (1998)

    Google Scholar 

  12. Hunt, K., Crossley, F.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42(2), 440–445 (1975)

    Article  Google Scholar 

  13. Joen, S., Choi, S.: Stiffness modulation for haptic augmented reality: extension to 3D interaction. In: Proceedings of the IEEE Haptics Symposium, pp. 273–280 (2010)

    Google Scholar 

  14. Mahvash, M., Okamura, A.M.: Friction compensation for a force-feedback telerobotic system. In: Proceedings of IEEE ICRA, pp. 3268–3273 (2006)

    Google Scholar 

  15. Massie, T.H.: Initial haptic explorations with the phantom: virtual touch through point interaction. Ph.D. thesis, Massachusetts Institute of Technology (1996)

    Google Scholar 

  16. Minsky, M.D.R.: Computational haptics: the sandpaper system for synthesizing texture for a force-feedback display. Ph.D. thesis, Massachusetts Institute of Technology (1995)

    Google Scholar 

  17. Okamoto, S., Nagano, H., Yamada, Y.: Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 6(1), 81–93 (2013)

    Article  Google Scholar 

  18. Okamura, A., Cutkosky, M., Dennerlein, J.: Reality-based models for vibration feedback in virtual environments. IEEE/ASME Trans. Mechatron. 6(3), 245–252 (2001). https://doi.org/10.1109/3516.951362

    Article  Google Scholar 

  19. Pai, D.K., Rizun, P.: The WHaT: a wireless haptic texture sensor. In: Proceedings of HAPTICS, pp. 3–9. IEEE (2003)

    Google Scholar 

  20. Romano, J., Kuchenbecker, K.: Creating realistic virtual textures from contact acceleration data. IEEE Trans. Haptics 5(2), 109–119 (2012). https://doi.org/10.1109/TOH.2011.38

    Article  Google Scholar 

  21. Romano, J., Yoshioka, T., Kuchenbecker, K.: Automatic filter design for synthesis of haptic textures from recorded acceleration data. In: Proceedings of IEEE ICRA, pp. 1815–1821, May 2010. https://doi.org/10.1109/ROBOT.2010.5509853

  22. Shin, S., Choi, S.: Hybrid haptic texture rendering using kinesthetic and vibrotactile feedback. In: International AsiaHaptics Conference, pp. 75–81 (2016)

    Google Scholar 

  23. Shin, S., Choi, S.: Geometry-based haptic texture modeling and rendering using photometric stereo. In: Proceedings of IEEE HAPTICS (2018)

    Google Scholar 

  24. Wellman, P., Howe, R.D.: Towords realistic vibrotactile display in virtual environments. In: Proceedings of the ASME Dynamic Systems and Control Division, pp. 713–718 (1995)

    Google Scholar 

  25. Yim, S., Choi, S.: Shape modeling of soft real objects using force-feedback haptic interface. In: Proceedings of IEEE HAPTICS, pp. 479–484 (2012)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. 2017-0-00179, HD Haptic Technology for Hyper Reality Contents).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seongwon Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cho, S., Choi, H., Shin, S., Choi, S. (2019). Data-Driven Multi-modal Haptic Rendering Combining Force, Tactile, and Thermal Feedback. In: Kajimoto, H., Lee, D., Kim, SY., Konyo, M., Kyung, KU. (eds) Haptic Interaction. AsiaHaptics 2018. Lecture Notes in Electrical Engineering, vol 535. Springer, Singapore. https://doi.org/10.1007/978-981-13-3194-7_15

Download citation

Publish with us

Policies and ethics