Skip to main content

Data Visualization of Violent Crime Hotspots in Malaysia

  • Conference paper
  • First Online:
Soft Computing in Data Science (SCDS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 937))

Included in the following conference series:

Abstract

Crime is a critical issue that has gained significant attention in many countries including Malaysia. The Malaysian government has invested in a system known as the Geographical Information System (GIS) to map the crime hotspots in high prospect zones. However, the occurrences of violent crimes continue to increase at an alarming rate despite the implementation of the system. In order to combat crimes in a more effective manner in recent years, crime mapping has been proposed to identify crime hotspots in the country. This study applies crime mapping to identify crime hotspots in Malaysia. Data on crime for 14 states in Malaysia from 2007–2016 were obtained, with permission, from the Royal Malaysia Police or known as Police DiRaja Malaysia (PDRM) in Bahasa Malaysia. Data visualization was carried out using Tableau to gain more insights on the patterns and behaviours from violent crime data. The results show that Selangor has the highest number of violent crimes, followed by Kuala Lumpur and Johor. Perlis has the lowest number of violent crimes. Gang robbery is the highest in all 14 states. Interestingly, violent crimes being the highest in Selangor which also has the highest youth population. There is also a strong significant positive correlation between number of violent crime and youth population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zakaria, S., Rahman, N.A.: The mapping of spatial patterns of property crime in Malaysia: normal mixture model approach. J. Bus. Soc. Dev. 4(1), 1–11 (2016)

    Google Scholar 

  2. Ishak, S.: Perceptions of people on police efficiency and crime prevention in urban areas in Malaysia. Econ. World 4(5), 243–248 (2016). https://doi.org/10.17265/2328-7144/2016.05.005

  3. Muhammad Amin, B., Mohammad Rahim, K., Geshina Ayu, M.S.: A trend analysis of violent crimes in Malaysia. Health 5(2), 41–56 (2014)

    Google Scholar 

  4. Performance Management and Delivery Unit (PEMANDU). GTP Annual Report 2010 (2010). https://www.pemandu.gov.my/assets/publications/annual-reports/GTP_2010_EN.pdf

  5. Habibullah, M.S., Baharom, A.H., Muhamad, S.: Crime and police personnel in Malaysia: an empirical investigation. Taylor’s Bus. Rev. (TBR) 4(2), 1–17 (2014)

    Article  Google Scholar 

  6. Overseas Security Advisory Council. Malaysia 2015 Crime and Safety Report (2015). https://www.osac.gov/pages/ContentReportDetails.aspx?cid=17215

  7. Sidhu, A.S.: The rise of crime in Malaysia: an academic and statistical analysis. J. Kuala Lumpur R. Malays. Police Coll. 4, 1–28 (2005)

    Google Scholar 

  8. Overseas Security Advisory Council. Malaysia 2016 Crime and Safety Report (2016). https://www.osac.gov/pages/ContentReportDetails.aspx?cid=19182

  9. Nelson, A.L., Bromley, R.D., Thomas, C.J.: Identifying micro-spatial and temporal patterns of violent crime and disorder in the British city centre. Appl. Geogr. 21(3), 249–274 (2001)

    Article  Google Scholar 

  10. Zainol, R., Yunus, F., Nordin, N.A., Maidin, S.L.: Empowering Community Neighborhood Watch with Crime Monitoring System using Web-Based GIS, 1–10 (2011)

    Google Scholar 

  11. Foon Tang, C.: An exploration of dynamic relationship between tourist arrivals, inflation, unemployment and crime rates in Malaysia. Int. J. Soc. Econ. 38(1), 50–69 (2011)

    Article  Google Scholar 

  12. Levine, N.: Crime mapping and the crimestat program. Geogr. Anal. 38(1), 41–56 (2006). https://doi.org/10.1111/j.0016-7363.2005.00673

    Article  Google Scholar 

  13. Salleh, S.A., Mansor, N.S., Yusoff, Z., Nasir, R.A.: The crime ecology: ambient temperature vs. spatial setting of crime (Burglary). Procedia - Soc. Behav. Sci. 42, 212–222 (2012)

    Article  Google Scholar 

  14. Murray, A.T., McGuffog, I., Western, J.S., Mullins, P.: Exploratory spatial data analysis techniques for examining urban crime. Br. J. Criminol. 41(2), 309–329 (2001). https://doi.org/10.1093/bjc/41.2.309

    Article  Google Scholar 

  15. Bakri, M., Abidin, Siti Z.Z., Shargabi, A.: Incremental filtering visualization of JobStreet Malaysia ICT jobs. In: Mohamed, A., Berry, Michael W., Yap, B.W. (eds.) SCDS 2017. CCIS, vol. 788, pp. 188–196. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-7242-0_16

    Chapter  Google Scholar 

  16. Idrus, Z., Abdullah, N.A.S., Zainuddin, H., Ja’afar, A.D.M.: Software application for analyzing photovoltaic module panel temperature in relation to climate factors. In: Mohamed, A., Berry, Michael W., Yap, B.W. (eds.) SCDS 2017. CCIS, vol. 788, pp. 197–208. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-7242-0_17

    Chapter  Google Scholar 

  17. Abdullah, N.A.S., Wahid, N.W.A., Idrus, Z.: Budget visual: malaysia budget visualization. In: Mohamed, A., Berry, Michael W., Yap, B.W. (eds.) SCDS 2017. CCIS, vol. 788, pp. 209–218. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-7242-0_18

    Chapter  Google Scholar 

  18. Rosli, N.A., Mohamed, A., Khan, R.: Visualisation enhancement of HoloCatT matrix. In: Badioze Zaman, H., Robinson, P., Petrou, M., Olivier, P., Schröder, H., Shih, Timothy K. (eds.) IVIC 2009. LNCS, vol. 5857, pp. 675–685. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05036-7_64

    Chapter  Google Scholar 

  19. Van Schaaik, J.G., Van Der Kemp, J.J.: Real crimes on virtual maps: the application of geography and GIS in criminology. In: Scholten, H.J., van de Velde, R., van Manen, N. (eds.) Geospatial Technology and the Role of Location in Science, pp. 217–237. Springer, Heidelberg (2009). https://doi.org/10.1007/978-90-481-2620-0_12

    Chapter  Google Scholar 

  20. Asmai, S.A., Roslin, N.I.A., Abdullah, R.W., Ahmad, S.: Predictive crime mapping model using association rule mining for crime analysis. Age 12, 21 (2014)

    Google Scholar 

  21. Boba, R.: Introductory Guide to Crime Analysis and Mapping, 74 (2001). http://www.ncjrs.gov/App/abstractdb/AbstractDBDetails.aspx?id=194685

  22. Peddle, D.R., Ferguson, D.T.: Optimisation of multisource data analysis: an example using evidential reasoning for GIS data classification. Comput. Geosci. 28(1), 45–52 (2002)

    Article  Google Scholar 

  23. Markovic, J., Stone, C.: Crime Mapping and the Policing of Democratic Societies. Vera Institute of Justice, New York (2002)

    Google Scholar 

  24. Chainey, S., Ratcliffe, J.: GIS and Crime Mapping. Wiley, Wiley (2013)

    Google Scholar 

  25. Abdullah, M.A., Abdullah, S.N.H.S., Nordin, M.J.: Smart City Security: Predicting the Next Location of Crime Using Geographical Information System With Machine Learning. Asia Geospatial Forum Malaysia Asia Geospatial Forum, September 2013, pp. 24–26 (2013)

    Google Scholar 

  26. Dunham, R.G., Alpert, G.P.: Critical Issues in Policing: Contemporary readings. Waveland Press, Long Grove (2015)

    Google Scholar 

  27. Johnson, C.P.: Crime Mapping and Analysis Using GIS. In: Conference on Geomatics in Electronic Governance, Geomatics 2000, pp. 1–5, January 2000

    Google Scholar 

  28. Bailey, T.C., Gatrell, A.C.: Interactive Spatial Data Analysis, vol. 413. Longman Scientific & Technical, Essex (1995)

    Google Scholar 

  29. Chainey, S., Reid, S., Stuart, N.: When is a hotspot a hotspot? A procedure for creating statistically robust hotspot maps of crime, pp. 21–36. Taylor & Francis, London (2002)

    Google Scholar 

  30. Eck, J., Chainey, S., Cameron, J., Wilson, R.: Mapping crime: understanding hotspots (2005)

    Google Scholar 

  31. Williamson, D., et al.: Tools in the spatial analysis of crime. Mapp. Anal. Crime Data: Lessons Res. Pract. 187 (2001)

    Google Scholar 

  32. Pallant, J.: SPSS Survival Manual. McGraw-Hill Education, New York City (2013)

    Google Scholar 

  33. Cohen, L., Manion, L., Morrison, K.: Research Methods in Education. Routledge, Abingdon (2013)

    Book  Google Scholar 

  34. Triola, M.F., Franklin, L.A.: Business Statistics. Addison-Wesley, Publishing Company, Inc., Abingdon (1994)

    Google Scholar 

Download references

Acknowledgement

We would like to thank the Polis DiRaja Malaysia (PDRM) for the permission to use the crime data for academic purpose, we are also grateful to the Research Management Centre (RMC) UiTM for the financial support under the university Research Entity Initiatives Grant (600-RMI/DANA 5/3/REI (16/2015)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bee Wah Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anuar, N.B., Yap, B.W. (2019). Data Visualization of Violent Crime Hotspots in Malaysia. In: Yap, B., Mohamed, A., Berry, M. (eds) Soft Computing in Data Science. SCDS 2018. Communications in Computer and Information Science, vol 937. Springer, Singapore. https://doi.org/10.1007/978-981-13-3441-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3441-2_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3440-5

  • Online ISBN: 978-981-13-3441-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics