Skip to main content

Cervical Nuclei Segmentation in Whole Slide Histopathology Images Using Convolution Neural Network

  • Conference paper
  • First Online:
Soft Computing in Data Science (SCDS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 937))

Included in the following conference series:

Abstract

Pathologists generally diagnose whether or not cervical cancer cells have the potential to spread to other organs and assess the malignancy of cancer through whole slide histopathology images using virtual microscopy. In this process, the morphology of nuclei is one of the significant diagnostic indices, including the size, the orientation and arrangement of the nuclei. Therefore, accurate segmentation of nuclei is a crucial step in clinical diagnosis. However, several challenges exist, namely a single whole slide image (WSI) often occupies a large amount of memory, making it difficult to manipulate. More than that, due to the extremely high density and variant shapes, sizes and overlapping nuclei, as well as low contrast, weakly defined boundaries, different staining methods and image acquisition techniques, it is difficult to achieve accurate segmentation. A method is proposed, comprised of two main parts to achieve lesion localization and automatic segmentation of nuclei. Initially, a U-Net model was used to localize and segment lesions. Then, a multi-task cascade network was proposed to combine nuclei foreground and edge information to obtain instance segmentation results. Evaluation of the proposed method for lesion localization and nuclei segmentation using a dataset comprised of cervical tissue sections collected by experienced pathologists along with comparative experiments, demonstrates the outstanding performance of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mcguire, S.: World cancer report 2014. Geneva, Switzerland: world health organization, international agency for research on cancer, WHO Press, 2015. Adv. Nutr. 7(2), 418 (2016)

    Article  MathSciNet  Google Scholar 

  2. Canavan, T.P., Doshi, N.R.: Cervical cancer. Am. Fam. Physician 61(5), 1369 (2000)

    Google Scholar 

  3. LeCun, Y.: http://yann.lecun.com/exdb/lenet/. Accessed 16 Oct 2013

  4. Saltzer, J.H.: End-to-end arguments in system design. ACM Trans. Comput. Syst. (TOCS) 2(4), 277–288 (1984)

    Article  Google Scholar 

  5. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2014)

    Article  Google Scholar 

  6. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 12(39), 2481–2495 (2017)

    Article  Google Scholar 

  7. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., et al.: Conditional random fields as recurrent neural networks. In: IEEE International Conference on Computer Vision (ICCV), pp. 1529–1537 (2015)

    Google Scholar 

  8. Chen, L.C., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2487–2496 (2016)

    Google Scholar 

  11. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3150–3158 (2015)

    Google Scholar 

  12. Li, Y., Qi, H., Dai, J., Ji, X., Wei, Y.: Fully convolutional instance-aware semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4438–4446 (2017)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  14. Dai, J., Li, Y., He, K., et al.: R-FCN: Object detection via region-based fully convolutional networks. Advances in Neural Information Processing Systems 29 (NIPS) (2016)

    Google Scholar 

  15. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. Computer Science (2014)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Scientific Instruments and Equipment Development Program of China (2013YQ03065101) and partially supported by National Natural Science Foundation (NNSF) of China under Grant 61503243 and National Science Foundation (NSF) of China under the Grant 61521063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaijie Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Q. et al. (2019). Cervical Nuclei Segmentation in Whole Slide Histopathology Images Using Convolution Neural Network. In: Yap, B., Mohamed, A., Berry, M. (eds) Soft Computing in Data Science. SCDS 2018. Communications in Computer and Information Science, vol 937. Springer, Singapore. https://doi.org/10.1007/978-981-13-3441-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3441-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3440-5

  • Online ISBN: 978-981-13-3441-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics