Skip to main content

Performance of Sub-optimal Searching Algorithms on PTS Phase Selections for PAPR Reduction

  • Conference paper
  • First Online:
Mobile Internet Security (MobiSec 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 971))

Included in the following conference series:

  • 358 Accesses

Abstract

The conventional partial transmit sequence (PTS) technique can provide good peak-to-average power ratio (PAPR) reduction performance for orthogonal frequency division multiplexing (OFDM) signals; however, determining the optimal phase factors requires an exhaustive search over all possible sets of phase factors, the search complexity of the original PTS method increases exponentially with the number of the sub-blocks and is extremely high for a larger number of sub-blocks. In this paper, we defined a new phase factor, and then proposed two algorithms to reduce search complexity and to improve the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Nee, R., Prasad, R.: OFDM for Wireless Multimedia Communication. Artech House Publishers, Boston (2000)

    Google Scholar 

  2. Bauml, R.W., Fischer, R.F.H., Huber, J.B.: Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electron. Lett. 32(22), 2056–2057 (1996)

    Article  Google Scholar 

  3. Wilkinson, T.A., Jones, A.E.: Minimization of the peak-to mean envelope power ratio of multicarrier transmission schemes by block coding. In: Proceedings of IEEE Vehicular Technology Conference, Chicago, pp. 825–829, July 1995

    Google Scholar 

  4. Schmidt, H., Kammeyer, K.D.: Reducing the peak to average power ratio of multicarrier signals by adaptive subcarrier selection. In: Proceedings of IEEE International Conference on Universal Personal Communications, vol. 2, pp. 933–937, October 1998

    Google Scholar 

  5. Muller, S.H., Huber, J.B.: OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences. Electron. Lett. 33, 368–369 (1997)

    Article  Google Scholar 

  6. Cimiini Jr., L.J., Sollenberger, N.R.: Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences. IEEE Commun. Lett. 4, 86–88 (2000)

    Article  Google Scholar 

  7. Han, S.H., Lee, J.H.: PAPR reduction of OFDM signals using a reduced complexity PTS technique. IEEE Signal Process. Lett. 11(11), 887–890 (2004)

    Article  Google Scholar 

  8. Tsai, Y.R., Hung, S.J.: PTS with non-uniform phase factors for PAPR reduction in OFDM Systems. IEEE Comm. Lett. 12(1), 20–22 (2008)

    Article  Google Scholar 

  9. He, Q., Dong, Q., Zhao, B., Wang, Y., Qiang, B.: P2P traffic optimization based on congestion distance and DHT. J. Internet Serv. Inf. Secur. (JISIS) 6(2), 53–69 (2016)

    Google Scholar 

  10. Taqieddin, E., Awad, F., Ahmad, H.: Location-aware and mobility-based performance optimization for wireless sensor networks. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. (JoWUA) 8(4), 37–59 (2017)

    Google Scholar 

  11. Majeed, A., Zia, T.: Multi-layer network architecture for supporting multiple applications in wireless sensor networks. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. (JoWUA) 8(3), 36–56 (2017)

    Google Scholar 

  12. Kitana, A., Traore, I., Woungang, I.: Impact study of a mobile botnet over LTE networks. J. Internet Serv. Inf. Secur. (JISIS) 6(2), 1–22 (2016)

    Google Scholar 

  13. Chen, H.-C.: TCABRP: a trust-based cooperation authentication bit-map routing protocol against insider security threats in wireless ad hoc networks. IEEE Syst. J. 11(2), 449–459 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded in part by Ministry of Science and Technology of Taiwan under Grant MOST 106-2632-E-468-003, MOST 106-2632-E-468-003 and MOST 106-2221-E-324-020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yung-Fa Huang or Hsing-Chung Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, JH., Chang, FY., Huang, YF., Chen, HC., Shae, ZY. (2019). Performance of Sub-optimal Searching Algorithms on PTS Phase Selections for PAPR Reduction. In: You, I., Chen, HC., Sharma, V., Kotenko, I. (eds) Mobile Internet Security. MobiSec 2017. Communications in Computer and Information Science, vol 971. Springer, Singapore. https://doi.org/10.1007/978-981-13-3732-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3732-1_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3731-4

  • Online ISBN: 978-981-13-3732-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics