Skip to main content

Fabrication and LBM-Modeling of Directional Fluid Transport on Low-Cost Electro-Osmotic Flow Device

  • Conference paper
  • First Online:
VLSI Design and Test (VDAT 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 892))

Included in the following conference series:

Abstract

In this work, we have presented a low-cost fabrication and modeling of an electro-osmotic flow (EOF) device. The presented fabrication approach eliminates the need of expensive UV lithography and plasma setups. The polydimethylsiloxane (PDMS) microfluidic device for EOF is fabricated using simple printed circuit board (PCB) as a mold. The device is bonded with glass using adhesive bonding technology hence eliminates the need for plasma. The in-house low cost microfluidic characterization setup is used for experimental study. The obtained characteristics are modeled by the mesoscopic lattice Boltzmann method (LBM) in which the Poison Boltzmann equations is successfully coupled to capture the electrical double layer (EDL) physics. From the obtained results, it is shown that the directional transport of a bulk fluid can be achieved by EOF mechanism by suitably switching the electrodes. The experimental velocity characteristics show good agreement with the simulated results. Thus, easy coupling of LBM can be used as a tool to design and investigate such MEMS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luka, G., et al.: Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications. Sensors 15(12), 30011–30031 (2015)

    Article  Google Scholar 

  2. Srinivasan, V., Pamula, V.K., Fair, R.B.: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4), 310–315 (2004)

    Article  Google Scholar 

  3. Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  Google Scholar 

  4. Kirby, B.J.: Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  5. Nguyen, N.T., Huang, X., Chuan, T.K.: MEMS-micropumps: a review. J. Fluids Eng. 124(2), 384–392 (2002)

    Article  Google Scholar 

  6. Friend, J., Yeo, L.: Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4(2), 026502 (2010)

    Article  Google Scholar 

  7. Howard, J.L., Hanssen, A.D.: Principles of a clean operating room environment. J. Arthropl. 22(7), 6–11 (2007)

    Article  Google Scholar 

  8. Kontakis, K., Petropoulos, A., Kaltsas, G., Speliotis, T., Gogolides, E.: A novel microfluidic integration technology for PCB-based devices: application to microflow sensing. Microelectron. Eng. 86(4–6), 1382–1384 (2009)

    Article  Google Scholar 

  9. Mata, A., Fleischman, A.J., Roy, S.: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices 7(4), 81–293 (2005)

    Article  Google Scholar 

  10. Lam, E., Ngo, T.: Manufacturing a PDMS microfluidic device via a Silicon Wafer Master. Harvard-MIT Div. Health Sci. Technol. HST. J., 400 (2007)

    Google Scholar 

  11. Bhattacharya, S., Datta, A., Berg, J.M., Gangopadhyay, S.: Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Microelectromech. Syst. 14(3), 590–597 (2005)

    Article  Google Scholar 

  12. Phillips, J.C., et al.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  13. Gupta, A., Matharoo, H.S., Makkar, D., Kumar, R.: Droplet formation via squeezing mechanism in a microfluidic flow-focusing device. Comput. Fluids 100, 218–226 (2014)

    Article  Google Scholar 

  14. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  15. Pravinraj, T., Patrikar, R.: Splitting and transport of a droplet with no external actuation force for lab on chip devices. In: Kaushik, B.K., Dasgupta, S., Singh, V. (eds.) VDAT 2017. CCIS, vol. 711, pp. 707–717. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-7470-7_66

    Chapter  Google Scholar 

  16. Pravinraj, T., Patrikar, R.: Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method. Appl. Surf. Sci. 409, 214–222 (2017)

    Article  Google Scholar 

  17. Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439–472 (2010)

    Article  MathSciNet  Google Scholar 

  18. Herr, A.E., Molho, J.I., Santiago, J.G., Mungal, M.G., Kenny, T.W., Garguilo, M.G.: Electroosmotic capillary ow with nonuniform zeta potential. Anal. Chem. 72(5), 1053–1057 (2000)

    Article  Google Scholar 

  19. Li, D.: Electrokinetics in Microfluidics. Elsevier, New York (2004)

    Google Scholar 

  20. Mohammadipour, O.R., Niazmand, H.: Numerical simulation of a at electroosmotic driven flow in the presence of a charged mid-plate. Int. J. Mod. Phys. C 26(7), 1550078 (2015)

    Article  Google Scholar 

  21. Wu, H., Huang, B., Zare, R.N.: Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Lab Chip 5(12), 1393–1398 (2005)

    Article  Google Scholar 

  22. Jain, V., Raj, T.P., Deshmukh, R., Patrikar, R.: Design, fabrication and characterization of low cost printed circuit board based EWOD device for digital microfluidics applications. Microsyst. Technol. 23(2), 389–397 (2017)

    Article  Google Scholar 

  23. Hecht, M., Harting, J.: Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations. J. Stat. Mech. Theory Exp. 1, P01018 (2010)

    Google Scholar 

  24. Li, L., Mei, R., Klausner, J.F.: Lattice Boltzmann models for the convection diffusion equation: D2Q5 vs D2Q9. Int. J. Heat Mass Transf. 108, 41–62 (2017)

    Article  Google Scholar 

  25. He, X., Luo, L.S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56(6), 6811 (1997)

    Article  Google Scholar 

  26. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511 (1954)

    Article  Google Scholar 

  27. Wang, J., Wang, M., Li, Z.: Lattice Poisson Boltzmann simulations of electro-osmotic flows in microchannels. J. Colloid Interface Sci. 296(2), 729–736 (2006)

    Article  Google Scholar 

  28. Chai, Z., Shi, B.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32(10), 2050–2058 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Pravinraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pravinraj, T., Patrikar, R. (2019). Fabrication and LBM-Modeling of Directional Fluid Transport on Low-Cost Electro-Osmotic Flow Device. In: Rajaram, S., Balamurugan, N., Gracia Nirmala Rani, D., Singh, V. (eds) VLSI Design and Test. VDAT 2018. Communications in Computer and Information Science, vol 892. Springer, Singapore. https://doi.org/10.1007/978-981-13-5950-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5950-7_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5949-1

  • Online ISBN: 978-981-13-5950-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics