Skip to main content

Differential Evolution FPA-SVM for Target Classification in Foliage Environment Using Device-Free Sensing

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 516))

  • 2162 Accesses

Abstract

Target classification in foliage environment is a challenging task in realistic due to the high-clutter background and unsettled weather. To detect a particular target, e.g., human, under such an environment, is an indispensable technique with significant application value. Traditional method such as computer vision techniques is hardly leveraged since the working condition is limited. Therefore, in this paper, we attempt to tackle human detection by using the radio frequency (RF) signal with a device-free sensing. To this end, we propose a differential evolution flower pollination algorithm support vector machine (DEFPA-SVM) approach to detect human among other targets, e.g., iron cupboard and wooden board. This task can be formally described as a target classification problem. In our experiment, the proposed DEFPA-SVM can effectively attain the best performance compared to other classical multi-target classification models and achieve a faster convergent speed than the traditional FPA-SVM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andriyenko A, Schindler K, Roth S. Discrete-continuous optimization for multi-target tracking. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). New York: IEEE; 2012. p. 1926–33.

    Google Scholar 

  2. Chan T-K, Kuga Y, Ishimaru A. Experimental studies on circular SAR imaging in clutter using angular correlation function technique. IEEE Trans Geosci Remote Sens. 1999;37(5):2192–7.

    Article  Google Scholar 

  3. Frolind P-O, Gustavsson A, Lundberg M, Ulander LM. Circular-aperture VHF-band synthetic aperture radar for detection of vehicles in forest concealment. IEEE Trans Geosci Remote Sens. 2012;50(4):1329–39.

    Article  Google Scholar 

  4. Geng Y, Chen J, Fu R, Bao G, Pahlavan K. Enlighten wearable physiological monitoring systems: on-body RF characteristics based human motion classification using a support vector machine. IEEE Trans Mob Comput. 2016;15(3):656–71.

    Article  Google Scholar 

  5. Huang Y, Sheng H, Liu Y, Zheng Y, Xiong Z. Person re-identification by unsupervised color spatial pyramid matching. In: International conference on knowledge science, engineering and management. Berlin: Springer; 2015. p. 799–810.

    Chapter  Google Scholar 

  6. Huang Y, Sheng H, Xiong Z. Person re-identification based on hierarchical bipartite graph matching. In: 2016 IEEE international conference on image processing (ICIP). New York: IEEE; 2016. p. 4255–9.

    Google Scholar 

  7. Huang Y, Sheng H, Zheng Y, Xiong Z. Deepdiff: learning deep difference features on human body parts for person re-identification. Neurocomputing. 2017;241:191–203.

    Article  Google Scholar 

  8. Huang Y, Xu J, Wu Q, Zheng Z, Zhang Z, Zhang J. Multi-pseudo regularized label for generated data in person re-identification. IEEE Trans Image Process. 2019;28(3):1391–1403.

    Article  MathSciNet  Google Scholar 

  9. Joon Oh S, Benenson R, Fritz M, Schiele B. Person recognition in personal photo collections. In: Proceedings of the IEEE international conference on computer vision. 2015. p. 3862–70.

    Google Scholar 

  10. Milan A, Roth S, Schindler K. Continuous energy minimization for multitarget tracking. IEEE Trans Pattern Anal Mach Intell. 2014;36(1):58–72.

    Article  Google Scholar 

  11. Muñoz-Marí J, Bovolo F, Gómez-Chova L, Bruzzone L, Camp-Valls G. Semisupervised one-class support vector machines for classification of remote sensing data. IEEE Trans Geosci Remote Sens. 2010;48(8):3188–97.

    Article  Google Scholar 

  12. Nguyen DT, Li W, Ogunbona PO. Human detection from images and videos: a survey. Pattern Recognit. 2016;51:148–75.

    Article  Google Scholar 

  13. Oh SJ, Benenson R, Fritz M, Schiele B. Faceless person recognition: privacy implications in social media. In: European conference on computer vision. Berlin: Springer; 2016. p. 19–35.

    Chapter  Google Scholar 

  14. Satpathy A, Jiang X, Eng H-L. Human detection by quadratic classification on subspace of extended histogram of gradients. IEEE Trans Image Process. 2014;23(1):287–97.

    Article  MathSciNet  Google Scholar 

  15. Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global optim. 1997;11(4):341–59.

    Article  MathSciNet  Google Scholar 

  16. Tang Y, Zhang Y-Q, Chawla NV, Krasser S. Svms modeling for highly imbalanced classification. IEEE Trans Syst Man Cybern Part B (Cybern). 2009;39(1):281–8.

    Article  Google Scholar 

  17. Zheng Z, Zheng L, Yang Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. arXiv preprint arXiv:1701.07717, 3, 2017.

  18. Zhong Y, Dutkiewicz E, Yang Y, Zhu X, Zhou Z, Jiang T. Internet of mission-critical things: human and animal classification: a device-free sensing approach. IEEE Int Things J. 2017.

    Google Scholar 

  19. Zhong Y, Yang Y, Zhu X, Dutkiewicz E, Shum KM, Xue Q. An on-chip bandpass filter using a broadside-coupled meander line resonator with a defected-ground structure. IEEE Electron Device Lett. 2017;38(5):626–9.

    Article  Google Scholar 

  20. Zhong Y, Yang Y, Zhu X, Dutkiewicz E, Zhou Z, Jiang T. Device-free sensing for personnel detection in a foliage environment. IEEE Geosci Remote Sens Lett. 2017;14(6):921–5.

    Article  Google Scholar 

  21. Zhong Y, Yang Y, Zhu X, Huang Y, Dutkiewicz E, Zhou Z, Jiang T. Impact of seasonal variations on foliage penetration experiment: a WSN-based device-free sensing approach. IEEE Trans Geosci Remote Sens. 2018.

    Google Scholar 

  22. Zhou F, De la Torre F. Spatio-temporal matching for human detection in video. In: European conference on computer vision. Berlin: Springer; 2014. p. 62–77.

    Chapter  Google Scholar 

Download references

Acknowledgments

This research is supported by NSFC 61671075 and NSFC 61631003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, Y., Huang, Y., Dutkiewicz, E., Wu, Q., Jiang, T. (2020). Differential Evolution FPA-SVM for Target Classification in Foliage Environment Using Device-Free Sensing. In: Liang, Q., Liu, X., Na, Z., Wang, W., Mu, J., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2018. Lecture Notes in Electrical Engineering, vol 516. Springer, Singapore. https://doi.org/10.1007/978-981-13-6504-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6504-1_67

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6503-4

  • Online ISBN: 978-981-13-6504-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics