Skip to main content

Threshold Ring Signature with Message Block Sharing

  • Conference paper
  • First Online:
Security and Privacy (ISEA-ISAP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 939))

Included in the following conference series:

Abstract

Lattices have attracted a great attention during recent years and many signature schemes have emerged based on lattices. In this paper we have proposed Threshold-Ring Signature KoutofNscheme, here signature is generated by a subset of K signers from the N signers while maintaining the anonymity of these K signers using the Ring Signature by Wang et al. The scheme uses message block sharing between members and is proved to be unforgeable as well as anonymous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are using \( \mathbf{{e}}_{(k_i)} \)’s just to differentiate them from \( \mathbf{{e}}_{k_i} \), as both of them are different.\( \mathbf{{e}}_{(k_i)} \) belongs to \( \mathbb {Z}^{{k_i}m} \) and \( \mathbf{{e}}_{k_i} \in \mathbb {Z}^m \) is a \( k_i \)th vector of \( \mathbf{{e}}_{(k_i)} \).

References

  1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: ACM Symposium on the Theory of Computing, pp. 1–32 (1996)

    Google Scholar 

  2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1

    Chapter  Google Scholar 

  3. Bendlin, R., Krehbiel, S., Peikert, C.: How to share a lattice trapdoor: threshold protocols for signatures and (H)IBE. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 218–236. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_14

    Chapter  MATH  Google Scholar 

  4. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_30

    Chapter  Google Scholar 

  5. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold ring signature scheme. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 255–272. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14712-8_16

    Chapter  Google Scholar 

  6. Choi, R., Kim, K.: Lattice-based threshold signature with message block sharing. In: Proceedings of Symposium on Cryptography and Information Security (2014)

    Google Scholar 

  7. Feng, T., Gao, Y., Ma, J.: Changeable threshold signature scheme based on lattice theory. In: Proceedings of International Conference on E-Business and E-Government(ICEE), pp. 1311–1315 (2010)

    Google Scholar 

  8. Fenghe, W., Zhenhua, L.: Short and provable secure lattice-based signature scheme in the standard model. Secur. Commun. Netw. 9, 3627–3632 (2016)

    Article  Google Scholar 

  9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of ACM Symposium on Theory of Computing, pp. 197–206 (2008)

    Google Scholar 

  10. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_23

    Chapter  Google Scholar 

  11. Jiang, Y., Kong, F., Ju, X.: Lattice-based proxy signature. In: Proceedings of International Conference on Computational Intelligence and Security, pp. 382–385 (2010)

    Google Scholar 

  12. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  13. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  14. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_24

    Chapter  Google Scholar 

  15. Shamir, A.: How to share a secret. In: Proceedings of ACM, pp. 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, J., Sun, B.: Ring signature schemes from lattice basis delegation. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 15–28. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25243-3_2

    Chapter  Google Scholar 

  17. Zhang, L., Sang, Y.: A lattice-based identity-based proxy signature from bonsai trees. Int. J. Adv. Comput. Technol. 4, 99–144 (2012)

    Google Scholar 

  18. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: Proceedings of STACS 2009, pp. 75–86 (2009)

    Google Scholar 

  19. Cash, D., Hofheinz, D., Kiltz, E.: How to delegate a lattice basis. Cryptology ePrint Archive, Report 2009/351 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Swati Rawal or Sahadeo Padhye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rawal, S., Padhye, S. (2019). Threshold Ring Signature with Message Block Sharing. In: Nandi, S., Jinwala, D., Singh, V., Laxmi, V., Gaur, M., Faruki, P. (eds) Security and Privacy. ISEA-ISAP 2019. Communications in Computer and Information Science, vol 939. Springer, Singapore. https://doi.org/10.1007/978-981-13-7561-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7561-3_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7560-6

  • Online ISBN: 978-981-13-7561-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics