Skip to main content

Ethanol Detection Through Photonic Crystal Fiber

  • Conference paper
  • First Online:
Proceedings of International Joint Conference on Computational Intelligence

Abstract

This article presents a photonic crystal fiber (PCF) sensor model with enlarged sensing performance for ethanol detection. Comsol Multiphysics (Version-5.2) is used to simulate the sensor model and MATLAB is used to plot expected sensing profiles. The proposed sensor model provides the sensitivity of around 54% at a wavelength of 1.6 \(\mu \mathrm {m}\). The sensor model also shows zero confinement loss till 1.6 \(\mu \mathrm {m}\) and after that around 0.65 \(\times \) \(10^{-7}\) dB/m confinement loss is observed at a wavelength of 1.8 \(\mu \mathrm {m}\). Effective area is also investigated in this work and it is obtained around 19 \(\mu \mathrm {m}^{2}\) at wavelength 1.6 \(\mu \mathrm {m}\). The proposed model is very simple and hopefully, possible to fabricate by using existing fabrication model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ademgil H (2014) Highly sensitive octagonal photonic crystal fiber based sensor. Optik-Int J Light Electron Opt 125(20):6274–6278

    Article  Google Scholar 

  2. Ademgil H, Haxha S (2015) Pcf based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors 15(12):31833–31842

    Article  Google Scholar 

  3. Arif MFH, Asaduzzaman S, Ahmed K, Morshed M (2016) High sensitive pcf based chemical sensor for ethanol detection. In: 2016 5th international conference on informatics, electronics and vision (ICIEV). IEEE, pp 6–9

    Google Scholar 

  4. Asaduzzaman S, Ahmed K, Bhuiyan T, Farah T (2016) Hybrid photonic crystal fiber in chemical sensing. SpringerPlus 5(1):748

    Article  Google Scholar 

  5. Bao H, Nielsen K, Rasmussen HK, Jepsen PU, Bang O (2012) Fabrication and characterization of porous-core honeycomb bandgap thz fibers. Opt Express 20(28):29507–29517

    Article  Google Scholar 

  6. Bise RT, Trevor D (2005) Solgel-derived microstructured fibers: fabrication and characterization. In: Optical fiber communication conference. Optical Society of America, p. OWL6 (2005)

    Google Scholar 

  7. Cordeiro CM, Franco MA, Chesini G, Barretto EC, Lwin R, Cruz CB, Large MC (2006) Microstructured-core optical fibre for evanescent sensing applications. Opt Express 14(26):13056–13066

    Article  Google Scholar 

  8. Ebendorff-Heidepriem H, Schuppich J, Dowler A, Lima-Marques L, Monro TM (2014) 3d-printed extrusion dies: a versatile approach to optical material processing. Opt Mater Express 4(8):1494–1504

    Article  Google Scholar 

  9. Fini JM (2004) Microstructure fibres for optical sensing in gases and liquids. Meas Sci Technol 15(6):1120

    Article  Google Scholar 

  10. Hossain MB, Bulbul AAM, Mukit MA, Podder E (2017) Analysis of optical properties for square, circular and hexagonal photonic crystal fiber. Opt Photonics J 7(11):235

    Article  Google Scholar 

  11. Hossain MB, Podder E, Adhikary A (2017) Optimized hexagonal photonic crystal fibre sensor for glucose sensing. Methodology

    Google Scholar 

  12. Hossain MM, Hossain MB, Amin MZ (2018) Small coupling length with a low confinement loss dual-core liquid infiltrated photonic crystal fiber coupler. OSA Contin. 1(3):953–962

    Article  Google Scholar 

  13. Huang Y, Xu Y, Yariv A (2004) Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl Phys Lett 85(22):5182–5184

    Article  Google Scholar 

  14. Islam MS, Sultana J, Atai J, Abbott D, Rana S, Islam MR (2017) Ultra low-loss hybrid core porous fiber for broadband applications. Appl Opt 56(4):1232–1237

    Article  Google Scholar 

  15. Jensen JB, Hoiby PE, Emiliyanov G, Bang O, Pedersen LH, Bjarklev A (2005) Selective detection of antibodies in microstructured polymer optical fibers. Opt Express 13(15):5883–5889

    Article  Google Scholar 

  16. Jorgenson R, Yee S (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sens Actuators B: Chem 12(3):213–220

    Article  Google Scholar 

  17. Luan N, Yao J (2017) A hollow-core photonic crystal fiber-based spr sensor with large detection range. IEEE Photonics J 9(3):1–7

    Article  Google Scholar 

  18. Matsui T, Zhou J, Nakajima K, Sankawa I (2005) Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss. J Lightwave Technol 23(12):4178–4183

    Article  Google Scholar 

  19. Monro TM, Richardson D, Bennett P (1999) Developing holey fibres for evanescent field devices. Electron Lett 35(14):1188–1189

    Article  Google Scholar 

  20. Otupiri R, Akowuah E, Haxha S, Ademgil H, AbdelMalek F, Aggoun A (2014) A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J 6(4):1–11

    Article  Google Scholar 

  21. Shi C, Zang XF, Chen L, Peng Y, Cai B, Nash GR, Zhu YM (2016) Compact broadband terahertz perfect absorber based on multi-interference and diffraction effects. IEEE Trans Terahertz Sci Technol 6(1):40–44

    Article  Google Scholar 

  22. Sultana J, Islam MS, Ahmed K, Dinovitser A, Ng BWH, Abbott D (2018) Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl Opt 57(10):2426–2433

    Article  Google Scholar 

  23. Wang Xd, Wolfbeis OS (2015) Fiber-optic chemical sensors and biosensors (2013–2015). Anal Chem 88(1):203–227

    Article  Google Scholar 

  24. Woyessa G, Fasano A, Markos C, Stefani A, Rasmussen HK, Bang O (2017) Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive bragg grating sensing. Opt Mater Express 7(1):286–295

    Article  Google Scholar 

  25. Xu Z, Chen X, Kim HN, Yoon J (2010) Sensors for the optical detection of cyanide ion. Chem Soc Rev 39(1):127–137

    Article  Google Scholar 

  26. Yang X, Lu Y, Liu B, Yao J (2017) Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12(2):489–496

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etu Podder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Podder, E., Hossain, M.B., Al-Mamun Bulbul, A., Shekhar Mondal, H. (2020). Ethanol Detection Through Photonic Crystal Fiber. In: Uddin, M., Bansal, J. (eds) Proceedings of International Joint Conference on Computational Intelligence. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-7564-4_15

Download citation

Publish with us

Policies and ethics