Skip to main content

Effective Indoor Robot Localization by Stacked Bidirectional LSTM Using Beacon-Based Range Measurements

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications (RiTA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1015))

Abstract

In this paper, we propose a stacked bidirectional Long Short-Term Memory (stacked Bi-LSTM) for accurate localization of a robot. Using deep learning, the proposed structure directly maps range measurements from beacons into robot position. This operation non-linearly maps the relationship not only considering the long-range dependence of sequential distance data but also using the correlation of the backward information and the forward information of the sequence of each time step by virtue of its bidirectional architecture. Our stacked bidirectional LSTM structure exhibits better estimates of robot positions than other RNN structure units on the simulated environment. In addition, experiments suggest that even if the robot position is not included in the training dataset, our method is able to predict robot positions with small errors through sequential distance data.

H. Lim—This material is based upon work supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) under Industrial Technology Innovation Program. No. 10067202, ‘Development of Disaster Response Robot System for Lifesaving and Supporting Fire Fighters at Complex Disaster Environment’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Staras, H., Honickman, S.: The accuracy of vehicle location by trilateration in a dense urban environment. IEEE Trans. Veh. Technol. 21(1), 38–43 (1972)

    Article  Google Scholar 

  2. Thomas, F., Ros, L.: Revisiting trilateration for robot localization. IEEE Trans. Robot. 21(1), 93–101 (2005)

    Article  Google Scholar 

  3. Cho, H., Kim, S.W.: Mobile robot localization using biased chirp-spread-spectrum ranging. IEEE Trans. Ind. Electron. 57(8), 2826–2835 (2010)

    Article  Google Scholar 

  4. Raghavan, A.N., Ananthapadmanaban, H., Sivamurugan, M.S., Ravindran, B.: Accurate mobile robot localization in indoor environments using bluetooth. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4391–4396. IEEE (2010)

    Google Scholar 

  5. Blanco, J.L., González, J., Fernández-Madrigal, J.A.: A pure probabilistic approach to range-only slam. In: ICRA, pp. 1436–1441 (2008). Citeseer

    Google Scholar 

  6. Blanco, J.L., Fernández-Madrigal, J.A., González, J.: Efficient probabilistic range-only slam. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 1017–1022. IEEE (2008)

    Google Scholar 

  7. Fabresse, F.R., Caballero, F., Maza, I., Ollero, A.: Undelayed 3D RO-SLAM based on Gaussian-mixture and reduced spherical parametrization. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1555–1561. Citeseer (2013)

    Google Scholar 

  8. Shetty, N.S.: Particle filter approach to overcome multipath propagation error in slam indoor applications. Ph.D. thesis, The University of North Carolina at Charlotte (2018)

    Google Scholar 

  9. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  10. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34(4–5), 705–724 (2015)

    Article  Google Scholar 

  11. Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_22

    Chapter  Google Scholar 

  12. Smith, H.H.: Object detection and distance estimation using deep learning algorithms for autonomous robotic navigation (2018)

    Google Scholar 

  13. Zhu, Y., et al.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3357–3364. IEEE (2017)

    Google Scholar 

  14. Hamandi, M., D’Arcy, M., Fazli, P.: DeepMoTIon: learning to navigate like humans. arXiv preprint arXiv:1803.03719 (2018)

  15. Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., Cremers, D.: Image-based localization using LSTMs for structured feature correlation. In: International Conference on Computer Vision (ICCV), pp. 627-637 (2017)

    Google Scholar 

  16. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  17. Gladh, S., Danelljan, M., Khan, F.S., Felsberg, M.: Deep motion features for visual tracking. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 1243–1248. IEEE (2016)

    Google Scholar 

  18. Wang, S., Clark, R., Wen, H., Trigoni, N.: DeepVo: towards end-to-end visual odometry with deep recurrent convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2043–2050. IEEE (2017)

    Google Scholar 

  19. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946 (2015)

    Google Scholar 

  20. Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.: Deep EndoVo: a recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing 275, 1861–1870 (2018)

    Article  Google Scholar 

  21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  22. Zaremba, W., Sutskever, I.: Learning to execute. arXiv preprint arXiv:1410.4615 (2014)

  23. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Article  Google Scholar 

  24. Clark, R., Wang, S., Wen, H., Markham, A., Trigoni, N.: VINet: visual-inertial odometry as a sequence-to-sequence learning problem. In: AAAI, pp. 3995–4001 (2017)

    Google Scholar 

  25. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  26. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sig. Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  27. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Myung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lim, H., Myung, H. (2019). Effective Indoor Robot Localization by Stacked Bidirectional LSTM Using Beacon-Based Range Measurements. In: Kim, JH., Myung, H., Lee, SM. (eds) Robot Intelligence Technology and Applications. RiTA 2018. Communications in Computer and Information Science, vol 1015. Springer, Singapore. https://doi.org/10.1007/978-981-13-7780-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7780-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7779-2

  • Online ISBN: 978-981-13-7780-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics